MNN/source/geometry/GeometryLSTM.cpp

689 lines
38 KiB
C++
Raw Normal View History

2020-11-05 16:41:56 +08:00
//
// GeometryLSTM.cpp
// MNN
//
// Created by MNN on 2020/07/02.
// Copyright © 2018, Alibaba Group Holding Limited
//
#include "geometry/GeometryComputer.hpp"
#include "geometry/GeometryComputerUtils.hpp"
#include "core/Macro.h"
2021-02-07 10:45:07 +08:00
#include <cmath>
2020-11-05 16:41:56 +08:00
namespace MNN {
class GeometryLSTM : public GeometryComputer {
public:
void _ComputeLSTMOnnx(const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs, Context& context,
CommandBuffer& res, const LSTM* lstm) const {
/* inputs:
X: T The input sequences packed (and potentially padded) into one 3-D tensor with the shape of [seq_length,
batch_size, input_size].
W: T
The weight tensor for the gates. Concatenation of W[iofc] and WB[iofc] (if bidirectional) along dimension 0. The
tensor has shape [num_directions, 4*hidden_size, input_size].
R: T
The recurrence weight tensor. Concatenation of R[iofc] and RB[iofc] (if bidirectional) along dimension 0. This
tensor has shape [num_directions, 4*hidden_size, hidden_size].
B: T (optional)
The bias tensor for input gate. [Wb[iofc] + Rb[iofc]], and [WBb[iofc] + RBb[iofc]] (if bidirectional) along
dimension 0. This tensor has shape [num_directions, 4*hidden_size]. Optional: If not specified - assumed to be
0.
*/
MNN_ASSERT(inputs.size() >= 4);
auto X_Input = inputs[0];
auto W = inputs[1];
auto R = inputs[2];
auto B = inputs[3];
Tensor* O_Init = nullptr;
Tensor* Cell_Init = nullptr;
if (inputs.size() >= 5) {
O_Init = inputs[4];
}
if (inputs.size() >= 6) {
Cell_Init = inputs[5];
}
/** Outputs:
Y: T (optional)
A tensor that concats all the intermediate output values of the hidden. It has shape [seq_length,
num_directions, batch_size, hidden_size].
Y_h: T (optional)
The last output value of the hidden. It has shape [num_directions, batch_size, hidden_size].
Y_c: T (optional)
The last output value of the cell. It has shape [num_directions, batch_size, hidden_size].
*/
auto Y = outputs[0];
if (outputs.size() >= 2) {
TensorUtils::getDescribe(outputs[1])->regions.clear();
TensorUtils::getDescribe(outputs[1])->memoryType = Tensor::InsideDescribe::MEMORY_VIRTUAL;
}
if (outputs.size() >= 3) {
TensorUtils::getDescribe(outputs[2])->regions.clear();
TensorUtils::getDescribe(outputs[2])->memoryType = Tensor::InsideDescribe::MEMORY_VIRTUAL;
}
auto seqLength = X_Input->length(0);
auto inputSize = X_Input->length(2);
auto batchSize = X_Input->length(1);
auto hiddenSize = Y->length(3);
auto numDirections = Y->length(1);
// Output contain seqLength * numDirection's region
auto outputDes = TensorUtils::getDescribe(Y);
outputDes->memoryType = Tensor::InsideDescribe::MEMORY_VIRTUAL;
outputDes->regions.resize(seqLength * numDirections);
auto encode = [&](Tensor* X, int direction) {
// FirstPart: Gate = MatMul(X, W, B) : 4 * hiddenSize, seqLength * batchSize
std::shared_ptr<Tensor> Gate(Tensor::createDevice<float>({4 * hiddenSize, seqLength * batchSize}));
res.extras.emplace_back(Gate);
std::shared_ptr<Tensor> Bias(Tensor::createDevice<float>({4 * hiddenSize}));
res.extras.emplace_back(Bias);
GeometryComputerUtils::makeRawAddressRef(Bias.get(), B, direction * 4 * hiddenSize, 4 * hiddenSize);
{
std::shared_ptr<Tensor> WWrap(Tensor::createDevice<float>({4 * hiddenSize, inputSize}));
std::shared_ptr<Tensor> GateWrap(Tensor::createDevice<float>({seqLength * batchSize, 4 * hiddenSize}));
GeometryComputerUtils::makeRawAddressRef(WWrap.get(), W, direction * 4 * hiddenSize * inputSize, 4 * hiddenSize * inputSize);
res.command.emplace_back(
GeometryComputerUtils::makeMatMul(X, WWrap.get(), GateWrap.get(), Bias.get(), false, true));
res.extras.emplace_back(WWrap);
res.extras.emplace_back(GateWrap);
auto gateDes = TensorUtils::getDescribe(Gate.get());
gateDes->memoryType = Tensor::InsideDescribe::MEMORY_VIRTUAL;
gateDes->regions.resize(1);
gateDes->regions[0].origin = GateWrap.get();
gateDes->regions[0].size[0] = 1;
gateDes->regions[0].size[1] = 4 * hiddenSize;
gateDes->regions[0].size[2] = seqLength * batchSize;
gateDes->regions[0].src.offset = 0;
gateDes->regions[0].src.stride[0] = 1;
gateDes->regions[0].src.stride[1] = 1;
gateDes->regions[0].src.stride[2] = 4 * hiddenSize;
gateDes->regions[0].dst.offset = 0;
gateDes->regions[0].dst.stride[0] = 1;
gateDes->regions[0].dst.stride[1] = seqLength * batchSize;
gateDes->regions[0].dst.stride[2] = 1;
}
// SecondPart: Compute outputs
std::shared_ptr<Tensor> RWrap(Tensor::createDevice<float>({4 * hiddenSize, hiddenSize}));
res.extras.emplace_back(RWrap);
GeometryComputerUtils::makeRawAddressRef(RWrap.get(), R, direction * 4 * hiddenSize * hiddenSize, 4 * hiddenSize * hiddenSize);
// Initial
std::shared_ptr<Tensor> I(Tensor::createDevice<float>({hiddenSize, batchSize}));
std::shared_ptr<Tensor> C(Tensor::createDevice<float>({hiddenSize, batchSize}));
std::shared_ptr<Tensor> F(Tensor::createDevice<float>({hiddenSize, batchSize}));
std::shared_ptr<Tensor> O(Tensor::createDevice<float>({hiddenSize, batchSize}));
std::shared_ptr<Tensor> Cell(Tensor::createDevice<float>({hiddenSize, batchSize}));
res.extras.insert(res.extras.end(), {I, C, F, O, Cell});
int seqStart = 0;
if (O_Init == nullptr && Cell_Init == nullptr) {
seqStart = 1;
// IO: WI * XI + BI
std::shared_ptr<Tensor> IO(Tensor::createDevice<float>({hiddenSize, batchSize}));
GeometryComputerUtils::makeSliceRef(IO.get(), Gate.get(), {1, 4 * hiddenSize, seqLength * batchSize},
{0, 0, 0}, {1, hiddenSize, batchSize});
std::shared_ptr<Tensor> CO(Tensor::createDevice<float>({hiddenSize, batchSize}));
GeometryComputerUtils::makeSliceRef(CO.get(), Gate.get(), {1, 4 * hiddenSize, seqLength * batchSize},
{0, 3 * hiddenSize, 0}, {1, hiddenSize, batchSize});
std::shared_ptr<Tensor> OO(Tensor::createDevice<float>({hiddenSize, batchSize}));
GeometryComputerUtils::makeSliceRef(OO.get(), Gate.get(), {1, 4 * hiddenSize, seqLength * batchSize},
{0, 1 * hiddenSize, 0}, {1, hiddenSize, batchSize});
res.extras.insert(res.extras.end(), {IO, CO, OO});
// I = Sigmoid(WI * XI + BI)
res.command.emplace_back(GeometryComputerUtils::makeUnary(UnaryOpOperation_SIGMOID, IO.get(), I.get()));
// C = tanh(WC * XC + BC)
res.command.emplace_back(GeometryComputerUtils::makeUnary(UnaryOpOperation_TANH, CO.get(), C.get()));
// Cell = I * C
res.command.emplace_back(
GeometryComputerUtils::makeBinary(BinaryOpOperation_MUL, I.get(), C.get(), Cell.get()));
// C = Sigmoid(WO * XO + BO)
res.command.emplace_back(GeometryComputerUtils::makeUnary(UnaryOpOperation_SIGMOID, OO.get(), C.get()));
// I = tanh(Cell), O = I * C
res.command.emplace_back(GeometryComputerUtils::makeUnary(UnaryOpOperation_TANH, Cell.get(), I.get()));
res.command.emplace_back(
GeometryComputerUtils::makeBinary(BinaryOpOperation_MUL, I.get(), C.get(), O.get()));
// Transpose
auto& outReg = outputDes->regions[0 + direction * seqLength];
outReg.origin = O.get();
outReg.size[0] = 1;
outReg.size[1] = batchSize;
outReg.size[2] = hiddenSize;
outReg.dst.offset = direction * ((batchSize * hiddenSize) + (seqLength - 1) * numDirections * batchSize * hiddenSize);
outReg.dst.stride[0] = 0;
outReg.dst.stride[1] = hiddenSize;
outReg.dst.stride[2] = 1;
outReg.src.offset = 0;
outReg.src.stride[0] = 0;
outReg.src.stride[1] = 1;
outReg.src.stride[2] = batchSize;
}
for (int t = seqStart; t < seqLength; ++t) {
if (0 == t) {
GeometryComputerUtils::makeRawAddressRef(O.get(), O_Init, O->elementSize() * direction, O->elementSize());
GeometryComputerUtils::makeRawAddressRef(Cell.get(), Cell_Init, Cell->elementSize() * direction, Cell->elementSize());
}
std::shared_ptr<Tensor> HRTotal(Tensor::createDevice<float>({4 * hiddenSize, batchSize}));
std::shared_ptr<Tensor> HRI(Tensor::createDevice<float>({hiddenSize, batchSize}));
std::shared_ptr<Tensor> HRC(Tensor::createDevice<float>({hiddenSize, batchSize}));
std::shared_ptr<Tensor> HRO(Tensor::createDevice<float>({hiddenSize, batchSize}));
std::shared_ptr<Tensor> HRF(Tensor::createDevice<float>({hiddenSize, batchSize}));
std::shared_ptr<Tensor> Temp(Tensor::createDevice<float>({hiddenSize, batchSize}));
res.extras.insert(res.extras.end(), {HRTotal, HRI, HRC, HRF, HRO, Temp});
GeometryComputerUtils::makeSliceRef(HRI.get(), HRTotal.get(), {1, 4 * hiddenSize, batchSize}, {0, 0, 0},
{1, hiddenSize, batchSize});
GeometryComputerUtils::makeSliceRef(HRO.get(), HRTotal.get(), {1, 4 * hiddenSize, batchSize},
{0, 1 * hiddenSize, 0}, {1, hiddenSize, batchSize});
GeometryComputerUtils::makeSliceRef(HRF.get(), HRTotal.get(), {1, 4 * hiddenSize, batchSize},
{0, 2 * hiddenSize, 0}, {1, hiddenSize, batchSize});
GeometryComputerUtils::makeSliceRef(HRC.get(), HRTotal.get(), {1, 4 * hiddenSize, batchSize},
{0, 3 * hiddenSize, 0}, {1, hiddenSize, batchSize});
// HRTotal = MatMul(O, RWrap)
res.command.emplace_back(
GeometryComputerUtils::makeMatMul(RWrap.get(), O.get(), HRTotal.get(), nullptr, false, false));
std::shared_ptr<Tensor> newO(Tensor::createDevice<float>({hiddenSize, batchSize}));
// Transpose
auto& outReg = outputDes->regions[t + direction * seqLength];
outReg.origin = newO.get();
outReg.size[0] = 1;
outReg.size[1] = batchSize;
outReg.size[2] = hiddenSize;
int pos = t;
if (direction) {
pos = seqLength - t - 1;
}
outReg.dst.offset = hiddenSize * batchSize * pos * numDirections + direction * batchSize * hiddenSize;
outReg.dst.stride[0] = 0;
outReg.dst.stride[1] = hiddenSize;
outReg.dst.stride[2] = 1;
outReg.src.offset = 0;
outReg.src.stride[0] = 0;
outReg.src.stride[1] = 1;
outReg.src.stride[2] = batchSize;
// IO: WI * XI + BI
std::shared_ptr<Tensor> IO(Tensor::createDevice<float>({hiddenSize, batchSize}));
GeometryComputerUtils::makeSliceRef(IO.get(), Gate.get(), {1, 4 * hiddenSize, seqLength * batchSize},
{0, 0, t * batchSize}, {1, hiddenSize, batchSize});
std::shared_ptr<Tensor> CO(Tensor::createDevice<float>({hiddenSize, batchSize}));
GeometryComputerUtils::makeSliceRef(CO.get(), Gate.get(), {1, 4 * hiddenSize, seqLength * batchSize},
{0, 3 * hiddenSize, t * batchSize}, {1, hiddenSize, batchSize});
std::shared_ptr<Tensor> FO(Tensor::createDevice<float>({hiddenSize, batchSize}));
GeometryComputerUtils::makeSliceRef(FO.get(), Gate.get(), {1, 4 * hiddenSize, seqLength * batchSize},
{0, 2 * hiddenSize, t * batchSize}, {1, hiddenSize, batchSize});
std::shared_ptr<Tensor> OO(Tensor::createDevice<float>({hiddenSize, batchSize}));
GeometryComputerUtils::makeSliceRef(OO.get(), Gate.get(), {1, 4 * hiddenSize, seqLength * batchSize},
{0, 1 * hiddenSize, t * batchSize}, {1, hiddenSize, batchSize});
res.extras.insert(res.extras.end(), {IO, CO, FO, OO, newO});
// I = Sigmoid(WI * XI + BI + HRI)
res.command.emplace_back(
GeometryComputerUtils::makeBinary(BinaryOpOperation_ADD, IO.get(), HRI.get(), Temp.get()));
res.command.emplace_back(GeometryComputerUtils::makeUnary(UnaryOpOperation_SIGMOID, Temp.get(), I.get()));
// C = tanh(WC * XC + BC + HRC)
res.command.emplace_back(
GeometryComputerUtils::makeBinary(BinaryOpOperation_ADD, CO.get(), HRC.get(), Temp.get()));
res.command.emplace_back(GeometryComputerUtils::makeUnary(UnaryOpOperation_TANH, Temp.get(), C.get()));
// F = Sigmoid(WF * XF + BF + HRF)
res.command.emplace_back(
GeometryComputerUtils::makeBinary(BinaryOpOperation_ADD, FO.get(), HRF.get(), Temp.get()));
res.command.emplace_back(GeometryComputerUtils::makeUnary(UnaryOpOperation_SIGMOID, Temp.get(), F.get()));
// Cell = I * C + F * Cell
res.command.emplace_back(
GeometryComputerUtils::makeBinary(BinaryOpOperation_MUL, I.get(), C.get(), Temp.get()));
res.command.emplace_back(
GeometryComputerUtils::makeBinary(BinaryOpOperation_MUL, F.get(), Cell.get(), I.get()));
if (0 == seqStart) {
std::shared_ptr<Tensor> newCell(Tensor::createDevice<float>({hiddenSize, batchSize}));
Cell = newCell;
res.extras.emplace_back(newCell);
}
res.command.emplace_back(
GeometryComputerUtils::makeBinary(BinaryOpOperation_ADD, I.get(), Temp.get(), Cell.get()));
// C = Sigmoid(WO * XO + BO + HRO)
res.command.emplace_back(
GeometryComputerUtils::makeBinary(BinaryOpOperation_ADD, OO.get(), HRO.get(), Temp.get()));
res.command.emplace_back(GeometryComputerUtils::makeUnary(UnaryOpOperation_SIGMOID, Temp.get(), C.get()));
// I = tanh(Cell), O = I * C
res.command.emplace_back(GeometryComputerUtils::makeUnary(UnaryOpOperation_TANH, Cell.get(), I.get()));
res.command.emplace_back(
GeometryComputerUtils::makeBinary(BinaryOpOperation_MUL, I.get(), C.get(), newO.get()));
O = newO;
}
if (outputs.size() >= 2) {
TensorUtils::getDescribe(outputs[1])->regions.emplace_back(GeometryComputerUtils::makeRawAddressRef(O.get(), 0, O->elementSize(), O->elementSize() * direction));
}
if (outputs.size() >= 3) {
TensorUtils::getDescribe(outputs[2])->regions.emplace_back(GeometryComputerUtils::makeRawAddressRef(Cell.get(), 0, Cell->elementSize(), Cell->elementSize() * direction));
}
};
std::shared_ptr<Tensor> XWrap(Tensor::createDevice<float>({seqLength * batchSize, inputSize}));
GeometryComputerUtils::makeRawAddressRef(XWrap.get(), X_Input, 0, seqLength * batchSize * inputSize);
res.extras.emplace_back(XWrap);
encode(XWrap.get(), 0);
if (numDirections > 1) {
// Create Reverse X
std::shared_ptr<Tensor> XReverse(Tensor::createDevice<float>({seqLength * batchSize, inputSize}));
res.extras.emplace_back(XReverse);
auto des = TensorUtils::getDescribe(XReverse.get());
des->memoryType = Tensor::InsideDescribe::MEMORY_VIRTUAL;
des->regions.resize(1);
auto& reg = des->regions[0];
reg.size[0] = 1;
reg.size[1] = seqLength;
reg.size[2] = batchSize * inputSize;
reg.src.offset = batchSize * inputSize * (seqLength-1);
reg.src.stride[0] = 0;
reg.src.stride[1] = -(batchSize * inputSize);
reg.src.stride[2] = 1;
reg.dst.offset = 0;
reg.dst.stride[0] = 0;
reg.dst.stride[1] = batchSize * inputSize;
reg.dst.stride[2] = 1;
reg.origin = X_Input;
// Encode XReverse
encode(XReverse.get(), 1);
}
}
virtual bool onCompute(const Op* op, const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs,
Context& context, CommandBuffer& res) const override {
if (2 < inputs.size()) {
// Onnx 's LSTM, use origin way
_ComputeLSTMOnnx(inputs, outputs, context, res, op->main_as_LSTM());
return true;
}
// For Old version's Caffe LSTM compute
MNN_ASSERT(1 == outputs.size());
MNN_ASSERT(1 == inputs.size());
auto& input = inputs[0];
auto& output = outputs[0];
MNN_ASSERT(TensorUtils::getDescribe(input)->dimensionFormat == MNN_DATA_FORMAT_NC4HW4);
const int batch = input->buffer().dim[0].extent; // batchSize
const int timeSteps = input->buffer().dim[1].extent;
const int numFeatures = input->buffer().dim[3].extent; // inputSize
const int numUnits = output->buffer().dim[3].extent; // hiddenSize
int batchSize = batch;
int seqLength = timeSteps;
int inputSize = numFeatures;
int hiddenSize = numUnits;
auto& tensors = context.searchConst(op);
Tensor* W = nullptr;
Tensor* R = nullptr;
Tensor* B = nullptr;
if (!tensors.empty()) {
MNN_ASSERT(3 == tensors.size());
W = tensors[0].get();
R = tensors[1].get();
B = tensors[2].get();
} else {
auto WW = context.allocConst(op, {1, 4 * hiddenSize, inputSize}, halide_type_of<float>());
auto RW = context.allocConst(op, {1, 4 * hiddenSize, hiddenSize}, halide_type_of<float>());
auto bias = context.allocConst(op, {4 * numUnits}, halide_type_of<float>());
if (nullptr == bias || nullptr == WW || nullptr == RW) {
return false;
}
W = WW.get();
R = RW.get();
B = bias.get();
auto mLSTM = op->main_as_LSTM();
// divide weight & bias if needed
auto weightI = mLSTM->weightI();
auto weightH = mLSTM->weightH();
int weightSize = weightI->dims()->data()[0];
// If devide, order is IFCO, else IFOC
auto devide = weightI && !weightH && weightSize == 4 * numUnits * (numFeatures + numUnits + 2);
{
// Bias
const float* biasPtr = nullptr;
size_t biasLength = 0;
if (nullptr != mLSTM->bias() && nullptr != mLSTM->bias()->float32s()) {
biasLength = mLSTM->bias()->float32s()->size();
biasPtr = mLSTM->bias()->float32s()->data();
} else {
biasLength = 4 * hiddenSize;
biasPtr =
mLSTM->weightI()->float32s()->data() + 4 * numUnits * numFeatures + 4 * numUnits * numUnits;
}
if (4 * hiddenSize == biasLength) {
::memcpy(bias->host<float>(), biasPtr, 4 * hiddenSize * sizeof(float));
} else {
MNN_ASSERT(8 * hiddenSize == biasLength);
auto dst = bias->host<float>();
auto src = biasPtr;
for (int i = 0; i < 4 * hiddenSize; ++i) {
dst[i] = src[i] + src[i + 4 * hiddenSize];
}
}
auto destBias = bias->host<float>();
if (devide) {
// IFCO -> IOFC
auto bf = destBias + 1 * hiddenSize;
auto bc = destBias + 2 * hiddenSize;
auto bo = destBias + 3 * hiddenSize;
for (int i = 0; i < hiddenSize; ++i) {
auto temp = bc[i];
bc[i] = bf[i];
bf[i] = bo[i];
bo[i] = temp;
}
} else {
// IFOC -> IOFC
auto bf = destBias + 1 * hiddenSize;
auto bo = destBias + 2 * hiddenSize;
for (int i = 0; i < hiddenSize; ++i) {
auto temp = bo[i];
bo[i] = bf[i];
bf[i] = temp;
}
}
}
// gate space
// cell space
if (mLSTM->weightH()) {
MNN_ASSERT(mLSTM->weightH()->float32s()->size() == numUnits * numUnits * 4);
}
// W: IFOC -> IOFC
{
auto srcWPtr = mLSTM->weightI()->float32s()->data();
auto dI = W->host<float>() + 0 * hiddenSize * inputSize;
auto dC = W->host<float>() + 3 * hiddenSize * inputSize;
auto dF = W->host<float>() + 2 * hiddenSize * inputSize;
auto dO = W->host<float>() + 1 * hiddenSize * inputSize;
auto sI = srcWPtr + 0 * hiddenSize * inputSize;
auto sF = srcWPtr + 1 * hiddenSize * inputSize;
auto sO = srcWPtr + 3 * hiddenSize * inputSize;
auto sC = srcWPtr + 2 * hiddenSize * inputSize;
if (!devide) {
sI = srcWPtr + 0 * hiddenSize * inputSize;
sF = srcWPtr + 1 * hiddenSize * inputSize;
sO = srcWPtr + 2 * hiddenSize * inputSize;
sC = srcWPtr + 3 * hiddenSize * inputSize;
}
::memcpy(dI, sI, hiddenSize * inputSize * sizeof(float));
::memcpy(dF, sF, hiddenSize * inputSize * sizeof(float));
::memcpy(dC, sC, hiddenSize * inputSize * sizeof(float));
::memcpy(dO, sO, hiddenSize * inputSize * sizeof(float));
}
// R: IFOC -> IOFC
{
auto srcHPtr = mLSTM->weightI()->float32s()->data() + 4 * numUnits * numFeatures;
if (!devide) {
srcHPtr = mLSTM->weightH()->float32s()->data();
}
auto dI = R->host<float>() + 0 * hiddenSize * hiddenSize;
auto dC = R->host<float>() + 3 * hiddenSize * hiddenSize;
auto dF = R->host<float>() + 2 * hiddenSize * hiddenSize;
auto dO = R->host<float>() + 1 * hiddenSize * hiddenSize;
auto sI = srcHPtr + 0 * hiddenSize * hiddenSize;
auto sC = srcHPtr + 2 * hiddenSize * hiddenSize;
auto sF = srcHPtr + 1 * hiddenSize * hiddenSize;
auto sO = srcHPtr + 3 * hiddenSize * hiddenSize;
if (!devide) {
sI = srcHPtr + 0 * hiddenSize * hiddenSize;
sC = srcHPtr + 3 * hiddenSize * hiddenSize;
sF = srcHPtr + 1 * hiddenSize * hiddenSize;
sO = srcHPtr + 2 * hiddenSize * hiddenSize;
}
::memcpy(dI, sI, hiddenSize * hiddenSize * sizeof(float));
::memcpy(dF, sF, hiddenSize * hiddenSize * sizeof(float));
::memcpy(dC, sC, hiddenSize * hiddenSize * sizeof(float));
::memcpy(dO, sO, hiddenSize * hiddenSize * sizeof(float));
}
}
std::shared_ptr<Tensor> tempInput(Tensor::createDevice<float>({seqLength, batchSize, inputSize}));
{
// Transpose for input
auto des = TensorUtils::getDescribe(tempInput.get());
des->memoryType = Tensor::InsideDescribe::MEMORY_VIRTUAL;
des->regions.resize(1);
auto& reg = des->regions[0];
reg.size[0] = seqLength;
reg.size[1] = batchSize;
reg.size[2] = inputSize;
reg.dst.offset = 0;
reg.dst.stride[0] = batchSize * inputSize;
reg.dst.stride[1] = inputSize;
reg.dst.stride[2] = 1;
reg.src.offset = 0;
reg.src.stride[0] = inputSize;
reg.src.stride[1] = inputSize * seqLength;
reg.src.stride[2] = 1;
reg.origin = inputs[0];
}
std::shared_ptr<Tensor> tempOutput(Tensor::createDevice<float>({seqLength, 1, batchSize, hiddenSize}));
_ComputeLSTMOnnx({tempInput.get(), W, R, B}, {tempOutput.get()}, context, res, op->main_as_LSTM());
res.extras.emplace_back(tempInput);
res.extras.emplace_back(tempOutput);
{
// Transpose for output
auto des = TensorUtils::getDescribe(output);
des->regions.resize(1);
des->memoryType = Tensor::InsideDescribe::MEMORY_VIRTUAL;
auto& reg = des->regions[0];
reg.origin = tempOutput.get();
reg.size[0] = seqLength;
reg.size[1] = batchSize;
reg.size[2] = hiddenSize;
reg.dst.offset = 0;
reg.src.stride[0] = batchSize * hiddenSize;
reg.src.stride[1] = hiddenSize;
reg.src.stride[2] = 1;
reg.dst.offset = 0;
reg.dst.stride[0] = hiddenSize;
reg.dst.stride[1] = hiddenSize * seqLength;
reg.dst.stride[2] = 1;
}
return true;
}
};
2021-02-07 10:45:07 +08:00
// LSTMBlockCell
class GeometryLSTMBlockCell : public GeometryComputer {
public:
virtual bool onCompute(const Op* op, const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs,
Context& context, CommandBuffer& res) const override {
/*
shapes:
x: [batchSize, inputSize]
cs_prev, i, cs, f, o, ci, co, h: [batchSize, hiddenSize]
wci, wcf, wco: [hiddenSize]
w: [inputSize + hiddenSize, 4 * hiddenSize]
b: [4 * hiddenSize]
*/
// inputs
auto x = inputs[0];
auto cs_prev = inputs[1];
auto h_prev = inputs[2];
auto w = inputs[3];
auto wci = inputs[4];
auto wcf = inputs[5];
auto wco = inputs[6];
auto b = inputs[7];
// outputs
auto i = outputs[0];
auto cs = outputs[1];
auto f = outputs[2];
auto o = outputs[3];
auto ci = outputs[4];
auto co = outputs[5];
auto h = outputs[6];
int batchSize = x->length(0);
int inputSize = x->length(1);
int hiddenSize = h_prev->length(1);
// params
auto param = op->main_as_LSTMBlockCell();
float cell_clip = param->cell_clip();
float forget_bias = param->forget_bias();
bool use_peephole = param->use_peephole();
// xh = [x, h_prev]
std::shared_ptr<Tensor> xh(Tensor::createDevice<float>({batchSize, inputSize + hiddenSize}));
{
auto xhDes = TensorUtils::getDescribe(xh.get());
xhDes->memoryType = Tensor::InsideDescribe::MEMORY_VIRTUAL;
xhDes->regions.resize(2);
xhDes->regions[0].origin = x;
xhDes->regions[0].size[0] = batchSize;
xhDes->regions[0].size[1] = inputSize;
xhDes->regions[0].src.stride[0] = inputSize;
xhDes->regions[0].dst.stride[0] = inputSize + hiddenSize;
xhDes->regions[1].origin = h_prev;
xhDes->regions[1].size[0] = batchSize;
xhDes->regions[1].size[1] = hiddenSize;
xhDes->regions[1].dst.offset = inputSize;
xhDes->regions[1].src.stride[0] = hiddenSize;
xhDes->regions[1].dst.stride[0] = inputSize + hiddenSize;
res.extras.emplace_back(xh);
}
// icfo = xh * w + b
std::shared_ptr<Tensor> icfo(Tensor::createDevice<float>({batchSize, 4 * hiddenSize}));
{
res.command.emplace_back(GeometryComputerUtils::makeMatMul(xh.get(), w, icfo.get(), b, false, false));
res.extras.emplace_back(icfo);
}
// [i, ci, f, o] = icfo
std::shared_ptr<Tensor> iTensor(Tensor::createDevice<float>({batchSize, hiddenSize}));
std::shared_ptr<Tensor> fTensor(Tensor::createDevice<float>({batchSize, hiddenSize}));
std::shared_ptr<Tensor> ciTensor(Tensor::createDevice<float>({batchSize, hiddenSize}));
std::shared_ptr<Tensor> oTensor(Tensor::createDevice<float>({batchSize, hiddenSize}));
{
// using ICFO order
// ref: https://github.com/tensorflow/tensorflow/blob/dec8e0b11f4f87693b67e125e67dfbc68d26c205/tensorflow/core/kernels/rnn/lstm_ops.h
std::vector<std::shared_ptr<Tensor>> ifcioArray = { iTensor, ciTensor, fTensor, oTensor };
// std::vector<std::shared_ptr<Tensor>> ifcioArray = { iTensor, fTensor, ciTensor, oTensor };
for (int n = 0; n < 4; n++) {
auto des = TensorUtils::getDescribe(ifcioArray[n].get());
des->memoryType = Tensor::InsideDescribe::MEMORY_VIRTUAL;
des->regions.resize(1);
des->regions[0].origin = icfo.get();
des->regions[0].size[0] = batchSize;
des->regions[0].size[1] = hiddenSize;
des->regions[0].src.offset = n * hiddenSize;
des->regions[0].src.stride[0] = 4 * hiddenSize;
des->regions[0].dst.stride[0] = hiddenSize;
}
res.extras.insert(res.extras.end(), { iTensor, fTensor, ciTensor, oTensor });
}
// f = f + forget_bias
std::shared_ptr<Tensor> ffTensor(Tensor::createDevice<float>({batchSize, hiddenSize}));
{
auto constTensor = context.allocConst(op, {}, halide_type_of<float>());
constTensor->host<float>()[0] = forget_bias;
res.extras.emplace_back(ffTensor);
res.command.emplace_back(GeometryComputerUtils::makeBinary(BinaryOpOperation_ADD, fTensor.get(), constTensor.get(), ffTensor.get()));
}
// if not use_peephole:
// wci = wcf = wco = 0
if (!use_peephole) {
auto zeroTensor = context.allocConst(op, {}, halide_type_of<float>());
zeroTensor->host<float>()[0] = 0;
wci = zeroTensor.get();
wcf = wci;
wco = wci;
}
if (use_peephole) {
// i = sigmoid(cs_prev * wci + i)
// f = sigmoid(cs_prev * wcf + f)
// ci = tanh(ci)
std::shared_ptr<Tensor> cs_prev_wci(Tensor::createDevice<float>({batchSize, hiddenSize}));
std::shared_ptr<Tensor> cs_prev_wcf(Tensor::createDevice<float>({batchSize, hiddenSize}));
std::shared_ptr<Tensor> cs_prev_wci_i(Tensor::createDevice<float>({batchSize, hiddenSize}));
std::shared_ptr<Tensor> cs_prev_wcf_f(Tensor::createDevice<float>({batchSize, hiddenSize}));
res.command.emplace_back(GeometryComputerUtils::makeBinary(BinaryOpOperation_MUL, cs_prev, wci, cs_prev_wci.get()));
res.command.emplace_back(GeometryComputerUtils::makeBinary(BinaryOpOperation_MUL, cs_prev, wcf, cs_prev_wcf.get()));
res.command.emplace_back(GeometryComputerUtils::makeBinary(BinaryOpOperation_ADD, cs_prev_wci.get(), iTensor.get(), cs_prev_wci_i.get()));
res.command.emplace_back(GeometryComputerUtils::makeBinary(BinaryOpOperation_ADD, cs_prev_wcf.get(), ffTensor.get(), cs_prev_wcf_f.get()));
res.command.emplace_back(GeometryComputerUtils::makeUnary(UnaryOpOperation_SIGMOID, cs_prev_wci_i.get(), i));
res.command.emplace_back(GeometryComputerUtils::makeUnary(UnaryOpOperation_SIGMOID, cs_prev_wcf_f.get(), f));
res.command.emplace_back(GeometryComputerUtils::makeUnary(UnaryOpOperation_TANH, ciTensor.get(), ci));
res.extras.insert(res.extras.end(), { cs_prev_wci, cs_prev_wcf, cs_prev_wci_i, cs_prev_wcf_f });
} else {
// i = sigmoid(i)
// f = sigmoid(f)
// ci = tanh(ci)
res.command.emplace_back(GeometryComputerUtils::makeUnary(UnaryOpOperation_SIGMOID, iTensor.get(), i));
res.command.emplace_back(GeometryComputerUtils::makeUnary(UnaryOpOperation_SIGMOID, ffTensor.get(), f));
res.command.emplace_back(GeometryComputerUtils::makeUnary(UnaryOpOperation_TANH, ciTensor.get(), ci));
}
Tensor* csTmp = cs;
if (cell_clip > 0) {
std::shared_ptr<Tensor> csTensor(Tensor::createDevice<float>({batchSize, hiddenSize}));
csTmp = csTensor.get();
res.extras.emplace_back(csTensor);
}
// cs = ci .* i + cs_prev .* f
std::shared_ptr<Tensor> ci_i(Tensor::createDevice<float>({batchSize, hiddenSize}));
std::shared_ptr<Tensor> cs_prev_f(Tensor::createDevice<float>({batchSize, hiddenSize}));
{
res.command.emplace_back(GeometryComputerUtils::makeBinary(BinaryOpOperation_MUL, ci, i, ci_i.get()));
res.command.emplace_back(GeometryComputerUtils::makeBinary(BinaryOpOperation_MUL, cs_prev, f, cs_prev_f.get()));
res.command.emplace_back(GeometryComputerUtils::makeBinary(BinaryOpOperation_ADD, ci_i.get(), cs_prev_f.get(), csTmp));
res.extras.insert(res.extras.end(), { ci_i, cs_prev_f });
}
if (cell_clip > 0) {
// cs = clip(cs, cell_clip)
std::shared_ptr<Tensor> upValue(Tensor::createDevice<float>({batchSize, hiddenSize}));
std::shared_ptr<Tensor> downValue(Tensor::createDevice<float>({batchSize, hiddenSize}));
std::shared_ptr<Tensor> midTensor(Tensor::createDevice<float>({batchSize, hiddenSize}));
auto posConst = context.allocConst(op, {}, halide_type_of<float>());
posConst->host<float>()[0] = std::fabs(cell_clip);
auto negConst = context.allocConst(op, {}, halide_type_of<float>());
negConst->host<float>()[0] = -std::fabs(cell_clip);
res.command.emplace_back(GeometryComputerUtils::makeBinary(BinaryOpOperation_GREATER, csTmp, posConst.get(), upValue.get()));
res.command.emplace_back(GeometryComputerUtils::makeBinary(BinaryOpOperation_LESS, csTmp, negConst.get(), downValue.get()));
flatbuffers::FlatBufferBuilder builder;
OpBuilder opBuilder(builder);
opBuilder.add_type(OpType_Select);
builder.Finish(opBuilder.Finish());
res.command.emplace_back(GeometryComputerUtils::makeCommand(builder, {upValue.get(), posConst.get(), csTmp}, {midTensor.get()}));
res.command.emplace_back(GeometryComputerUtils::makeCommand(builder, {downValue.get(), negConst.get(), midTensor.get()}, {cs}));
res.extras.insert(res.extras.end(), { upValue, downValue, midTensor });
}
if (use_peephole) {
// o = sigmoid(cs * wco + o)
std::shared_ptr<Tensor> cs_wco(Tensor::createDevice<float>({batchSize, hiddenSize}));
std::shared_ptr<Tensor> cs_wco_o(Tensor::createDevice<float>({batchSize, hiddenSize}));
res.command.emplace_back(GeometryComputerUtils::makeBinary(BinaryOpOperation_MUL, cs, wco, cs_wco.get()));
res.command.emplace_back(GeometryComputerUtils::makeBinary(BinaryOpOperation_ADD, cs_wco.get(), oTensor.get(), cs_wco_o.get()));
res.command.emplace_back(GeometryComputerUtils::makeUnary(UnaryOpOperation_SIGMOID, cs_wco_o.get(), o));
res.extras.insert(res.extras.end(), { cs_wco, cs_wco_o });
} else {
// o = sigmoid(o)
res.command.emplace_back(GeometryComputerUtils::makeUnary(UnaryOpOperation_SIGMOID, oTensor.get(), o));
}
// co = tanh(cs)
// h = co .* o
res.command.emplace_back(GeometryComputerUtils::makeUnary(UnaryOpOperation_TANH, cs, co));
res.command.emplace_back(GeometryComputerUtils::makeBinary(BinaryOpOperation_MUL, co, o, h));
return true;
}
};
2020-11-05 16:41:56 +08:00
static void _create() {
std::shared_ptr<GeometryComputer> comp(new GeometryLSTM);
GeometryComputer::registerGeometryComputer(comp, {OpType_LSTM});
2021-02-07 10:45:07 +08:00
std::shared_ptr<GeometryComputer> comp1(new GeometryLSTMBlockCell);
GeometryComputer::registerGeometryComputer(comp1, {OpType_LSTMBlockCell});
2020-11-05 16:41:56 +08:00
}
REGISTER_GEOMETRY(GeometryLSTM, _create);
} // namespace MNN