mirror of https://github.com/alibaba/MNN.git
				
				
				
			
		
			
	
	
		
			54 lines
		
	
	
		
			2.0 KiB
		
	
	
	
		
			C++
		
	
	
	
		
		
			
		
	
	
			54 lines
		
	
	
		
			2.0 KiB
		
	
	
	
		
			C++
		
	
	
	
|  | //
 | ||
|  | //  ShapeGridSample.cpp
 | ||
|  | //  MNN
 | ||
|  | //
 | ||
|  | //  Created by MNN on 2021/03/24.
 | ||
|  | //  Copyright © 2018, Alibaba Group Holding Limited
 | ||
|  | //
 | ||
|  | 
 | ||
|  | #include "shape/SizeComputer.hpp"
 | ||
|  | #include "core/Macro.h"
 | ||
|  | 
 | ||
|  | namespace MNN { | ||
|  | class GridSampleSizeComputer : public SizeComputer { | ||
|  |     virtual bool onComputeSize(const MNN::Op *op, const std::vector<Tensor *> &inputs, | ||
|  |                                const std::vector<Tensor *> &outputs) const override { | ||
|  |         // https://pytorch.org/docs/1.7.1/nn.functional.html?highlight=grid_sample#torch.nn.functional.grid_sample
 | ||
|  |         // inputs[0] is input, inputs[1] is grid
 | ||
|  |         MNN_ASSERT(2 == inputs.size()); | ||
|  |         MNN_ASSERT(1 == outputs.size()); | ||
|  |         MNN_ASSERT(4 == inputs[0]->buffer().dimensions && 4 == inputs[1]->buffer().dimensions); | ||
|  |         MNN_ASSERT(inputs[0]->buffer().dim[0].extent == inputs[1]->buffer().dim[0].extent); | ||
|  |         MNN_ASSERT(2 == inputs[1]->buffer().dim[3].extent); | ||
|  | 
 | ||
|  |         auto &ibInput0 = inputs[0]->buffer(); | ||
|  |         auto &ibInput1 = inputs[1]->buffer(); | ||
|  |         auto &ob = outputs[0]->buffer(); | ||
|  | 
 | ||
|  |         ob.dimensions = ibInput1.dimensions; | ||
|  |         ob.dim[0].extent = ibInput0.dim[0].extent; | ||
|  |         ob.dim[1].extent = ibInput0.dim[1].extent; | ||
|  |         ob.dim[2].extent = ibInput1.dim[1].extent; | ||
|  |         ob.dim[3].extent = ibInput1.dim[2].extent; | ||
|  | 
 | ||
|  |         ob.type = ibInput0.type; | ||
|  |         TensorUtils::getDescribe(outputs[0])->dimensionFormat = TensorUtils::getDescribe( | ||
|  |                 inputs[0])->dimensionFormat; | ||
|  |         return true; | ||
|  |     } | ||
|  | 
 | ||
|  |     virtual float onComputeFlops(const MNN::Op *op, const std::vector<Tensor *> &inputs, | ||
|  |                                  const std::vector<Tensor *> &outputs) const override { | ||
|  |         auto gridSampleParam = op->main_as_GridSample(); | ||
|  |         if (gridSampleParam->mode() == MNN::SampleMode_BILINEAR) { | ||
|  |             return 4 * SizeComputer::onComputeFlops(op, inputs, outputs); | ||
|  |         } | ||
|  | 
 | ||
|  |         return SizeComputer::onComputeFlops(op, inputs, outputs); | ||
|  |     } | ||
|  | }; | ||
|  | 
 | ||
|  | REGISTER_SHAPE(GridSampleSizeComputer, OpType_GridSample); | ||
|  | 
 | ||
|  | } // namespace MNN
 |