2021-01-06 16:29:37 +08:00
|
|
|
//
|
|
|
|
// ModuleTest.cpp
|
|
|
|
// MNNTests
|
|
|
|
//
|
|
|
|
// Created by MNN on b'2020/12/29'.
|
|
|
|
// Copyright © 2018, Alibaba Group Holding Limited
|
|
|
|
//
|
|
|
|
|
|
|
|
#include <MNN/expr/Module.hpp>
|
|
|
|
#include <MNN/expr/ExprCreator.hpp>
|
|
|
|
#include <thread>
|
|
|
|
#include "MNNTestSuite.h"
|
|
|
|
#include "core/Backend.hpp"
|
|
|
|
#include <MNN/expr/Executor.hpp>
|
2021-02-07 10:45:07 +08:00
|
|
|
#define MNN_OPEN_TIME_TRACE
|
2021-01-06 16:29:37 +08:00
|
|
|
#include <MNN/AutoTime.hpp>
|
|
|
|
#include <MNN/expr/ExecutorScope.hpp>
|
|
|
|
#include "MNN_generated.h"
|
|
|
|
using namespace MNN::Express;
|
|
|
|
using namespace MNN;
|
|
|
|
|
|
|
|
// When we use MNNConverter to convert other mobilenet model to MNN model,
|
|
|
|
// {Conv3x3Depthwise + BN + Relu + Conv1x1 + BN + Relu} will be converted
|
|
|
|
// and optimized to {Conv3x3Depthwise + Conv1x1}
|
|
|
|
static VARP convBlock(VARP x, INTS channels, int stride) {
|
|
|
|
int inputChannel = channels[0], outputChannel = channels[1];
|
|
|
|
int group = inputChannel;
|
|
|
|
x = _Conv(0.0f, 0.0f, x, {inputChannel, inputChannel}, {3, 3}, SAME, {stride, stride}, {1, 1}, group);
|
|
|
|
x = _Conv(0.0f, 0.0f, x, {inputChannel, outputChannel}, {1, 1}, SAME, {1, 1}, {1, 1}, 1);
|
|
|
|
return x;
|
|
|
|
}
|
|
|
|
static VARP convBlocTemp(VARP x, INTS channels, int stride) {
|
|
|
|
int inputChannel = channels[0], outputChannel = channels[1];
|
|
|
|
int group = inputChannel;
|
|
|
|
x = _Conv(0.0f, 0.0f, x, {inputChannel, inputChannel}, {3, 3}, SAME, {stride, stride}, {1, 1});
|
|
|
|
x = _Conv(0.0f, 0.0f, x, {inputChannel, outputChannel}, {1, 1}, SAME, {1, 1}, {1, 1}, 1);
|
|
|
|
return x;
|
|
|
|
}
|
|
|
|
static VARP _mobileNetV1Expr() {
|
|
|
|
int inputSize = 224, poolSize; // MobileNet_224, MobileNet_192, MobileNet_160, MobileNet_128
|
|
|
|
{
|
|
|
|
inputSize = 224;
|
|
|
|
poolSize = inputSize / 32;
|
|
|
|
}
|
|
|
|
|
|
|
|
int channels[6]; // MobileNet_100, MobileNet_075, MobileNet_050, MobileNet_025
|
|
|
|
{ channels[0] = 32; }
|
|
|
|
|
|
|
|
for (int i = 1; i < 6; ++i) {
|
|
|
|
channels[i] = channels[0] * (1 << i);
|
|
|
|
}
|
|
|
|
|
|
|
|
auto x = _Input({1, 3, inputSize, inputSize}, NC4HW4);
|
|
|
|
x->setName("Input");
|
|
|
|
x = _Conv(0.0f, 0.0f, x, {3, channels[0]}, {3, 3}, SAME, {2, 2}, {1, 1}, 1);
|
|
|
|
x = convBlock(x, {channels[0], channels[1]}, 1);
|
|
|
|
x = convBlock(x, {channels[1], channels[2]}, 2);
|
|
|
|
x = convBlock(x, {channels[2], channels[2]}, 1);
|
|
|
|
x = convBlock(x, {channels[2], channels[3]}, 2);
|
|
|
|
x = convBlock(x, {channels[3], channels[3]}, 1);
|
|
|
|
x = convBlock(x, {channels[3], channels[4]}, 2);
|
|
|
|
x = convBlock(x, {channels[4], channels[4]}, 1);
|
|
|
|
x = convBlocTemp(x, {channels[4], channels[4]}, 1);
|
|
|
|
x = convBlock(x, {channels[4], channels[4]}, 1);
|
|
|
|
x = convBlock(x, {channels[4], channels[4]}, 1);
|
|
|
|
x = convBlock(x, {channels[4], channels[4]}, 1);
|
|
|
|
x = convBlock(x, {channels[4], channels[5]}, 2);
|
|
|
|
x = convBlock(x, {channels[5], channels[5]}, 1);
|
|
|
|
x = _AvePool(x, {poolSize, poolSize}, {1, 1}, VALID);
|
|
|
|
x = _Conv(0.0f, 0.0f, x, {channels[5], 1001}, {1, 1}, VALID, {1, 1}, {1, 1}, 1); // reshape FC with Conv1x1
|
|
|
|
x = _Softmax(x, -1);
|
|
|
|
x = _Convert(x, NCHW);
|
|
|
|
x->setName("Prob");
|
|
|
|
return x;
|
|
|
|
}
|
|
|
|
class ModuleTest : public MNNTestCase {
|
|
|
|
public:
|
|
|
|
virtual bool run() {
|
|
|
|
auto y = _mobileNetV1Expr();
|
|
|
|
std::unique_ptr<MNN::NetT> net(new NetT);
|
|
|
|
Variable::save({y}, net.get());
|
|
|
|
y = nullptr;
|
|
|
|
flatbuffers::FlatBufferBuilder builderOutput(1024);
|
|
|
|
auto len = MNN::Net::Pack(builderOutput, net.get());
|
|
|
|
builderOutput.Finish(len);
|
|
|
|
int sizeOutput = builderOutput.GetSize();
|
|
|
|
auto bufferOutput = builderOutput.GetBufferPointer();
|
|
|
|
// Force use CPU Runtime
|
|
|
|
BackendConfig bnConfig;
|
|
|
|
auto exe = Executor::newExecutor(MNN_FORWARD_CPU, bnConfig, 1);
|
|
|
|
ExecutorScope scope(exe);
|
|
|
|
auto rtInfo = Express::ExecutorScope::Current()->getRuntime();
|
|
|
|
auto rt = rtInfo.first.begin()->second;
|
|
|
|
auto mem0 = rt->onGetMemoryInMB();
|
|
|
|
Module::Config config;
|
|
|
|
config.shapeMutable = false;
|
|
|
|
config.rearrange = true;
|
|
|
|
std::shared_ptr<Module> interp0(Module::load({"Input"}, {"Prob"}, bufferOutput, sizeOutput, &config));
|
|
|
|
auto mem1 = rt->onGetMemoryInMB();
|
|
|
|
MNN_PRINT("Increase: %f in rt\n", mem1 - mem0);
|
|
|
|
std::shared_ptr<Module> interp1(Module::clone(interp0.get(), true));
|
|
|
|
auto mem2 = rt->onGetMemoryInMB();
|
|
|
|
MNN_PRINT("Increase: %f in rt\n", mem2 - mem1);
|
|
|
|
if (mem2 - mem1 > mem1 - mem0) {
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
config.rearrange = false;
|
|
|
|
std::shared_ptr<Module> interp2(Module::load({"Input"}, {"Prob"}, bufferOutput, sizeOutput, &config));
|
|
|
|
std::shared_ptr<Module> interp3(Module::clone(interp2.get()));
|
|
|
|
auto x = _Input({1, 3, 224, 224}, NC4HW4, halide_type_of<float>());
|
|
|
|
auto xPtr = x->writeMap<float>();
|
|
|
|
::memset(xPtr, 0, 1*3*224*224*sizeof(float));
|
|
|
|
x->unMap();
|
|
|
|
auto y0 = interp0->onForward({x});
|
|
|
|
auto y1 = interp1->onForward({x});
|
|
|
|
if (y0.size() != 1) {
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
{
|
|
|
|
auto info = y0[0]->getInfo();
|
|
|
|
if (info->size != 1001) {
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
if (y0[0]->readMap<float>() == nullptr) {
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
if (y1.size() != 1) {
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
{
|
|
|
|
auto info = y1[0]->getInfo();
|
|
|
|
if (info->size != 1001) {
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
if (y1[0]->readMap<float>() == nullptr) {
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
};
|
|
|
|
MNNTestSuiteRegister(ModuleTest, "expr/ModuleTest");
|
2021-02-07 10:45:07 +08:00
|
|
|
|
|
|
|
|
|
|
|
class SessionTest : public MNNTestCase {
|
|
|
|
public:
|
|
|
|
virtual bool run() {
|
|
|
|
flatbuffers::FlatBufferBuilder builderOutput(1024);
|
|
|
|
{
|
|
|
|
auto y = _mobileNetV1Expr();
|
|
|
|
std::unique_ptr<MNN::NetT> net(new NetT);
|
|
|
|
Variable::save({y}, net.get());
|
|
|
|
y = nullptr;
|
|
|
|
auto len = MNN::Net::Pack(builderOutput, net.get());
|
|
|
|
builderOutput.Finish(len);
|
|
|
|
}
|
|
|
|
int sizeOutput = builderOutput.GetSize();
|
|
|
|
auto bufferOutput = builderOutput.GetBufferPointer();
|
|
|
|
std::shared_ptr<Interpreter> net(Interpreter::createFromBuffer((void*)bufferOutput, sizeOutput));
|
|
|
|
ScheduleConfig config;
|
|
|
|
config.numThread = 1;
|
|
|
|
auto s1 = net->createSession(config);
|
|
|
|
int runTime = 10;
|
|
|
|
{
|
|
|
|
AUTOTIME;
|
|
|
|
for (int t = 0; t < runTime; ++t) {
|
|
|
|
net->runSession(s1);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
net->releaseSession(s1);
|
|
|
|
std::vector<Session*> sessions;
|
|
|
|
for (int i = 0; i < 4; ++i) {
|
|
|
|
auto s = net->createSession(config);
|
|
|
|
sessions.emplace_back(s);
|
|
|
|
}
|
|
|
|
std::vector<std::thread> allThreads;
|
|
|
|
for (int i = 0; i < 4; ++i) {
|
|
|
|
auto s = sessions[i];
|
|
|
|
allThreads.emplace_back(std::thread([s, net, config, runTime] {
|
|
|
|
{
|
|
|
|
AUTOTIME;
|
|
|
|
for (int t = 0; t < runTime; ++t) {
|
|
|
|
net->runSession(s);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}));
|
|
|
|
}
|
|
|
|
for (auto& t : allThreads) {
|
|
|
|
t.join();
|
|
|
|
}
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
};
|
|
|
|
MNNTestSuiteRegister(SessionTest, "expr/SessionTest");
|