MNN/tools/cpp/revertMNNModel.cpp

102 lines
3.1 KiB
C++
Raw Normal View History

2019-04-17 10:49:11 +08:00
//
// revertMNNModel.cpp
// MNN
//
// Created by MNN on 2019/01/31.
// Copyright © 2018, Alibaba Group Holding Limited
//
#include <cstdlib>
#include <random>
2019-04-17 10:49:11 +08:00
#include <ctime>
#include <fstream>
#include <iostream>
#include <string.h>
#include <stdlib.h>
2019-12-27 22:16:57 +08:00
#include <MNN/MNNDefine.h>
2019-04-17 10:49:11 +08:00
#include "revertMNNModel.hpp"
const float MIN_VALUE = -2.0;
const float MAX_VALUE = 2.0;
Revert::Revert(const char* originalModelFileName) {
std::ifstream inputFile(originalModelFileName, std::ios::binary);
inputFile.seekg(0, std::ios::end);
const auto size = inputFile.tellg();
inputFile.seekg(0, std::ios::beg);
char* buffer = new char[size];
inputFile.read(buffer, size);
inputFile.close();
mMNNNet = MNN::UnPackNet(buffer);
delete[] buffer;
MNN_ASSERT(mMNNNet->oplists.size() > 0);
}
Revert::~Revert() {
}
void* Revert::getBuffer() const {
return reinterpret_cast<void*>(mBuffer.get());
}
const size_t Revert::getBufferSize() const {
return mBufferSize;
}
void Revert::packMNNNet() {
flatbuffers::FlatBufferBuilder builder(1024);
auto offset = MNN::Net::Pack(builder, mMNNNet.get());
builder.Finish(offset);
mBufferSize = builder.GetSize();
mBuffer.reset(new uint8_t[mBufferSize], std::default_delete<uint8_t[]>());
2019-04-17 10:49:11 +08:00
::memcpy(mBuffer.get(), builder.GetBufferPointer(), mBufferSize);
mMNNNet.reset();
}
void Revert::initialize() {
if (mMNNNet->bizCode == "benchmark") {
randStart();
for (auto& op : mMNNNet->oplists) {
const auto opType = op->type;
switch (opType) {
case MNN::OpType_Convolution:
case MNN::OpType_Deconvolution:
case MNN::OpType_ConvolutionDepthwise: {
auto param = op->main.AsConvolution2D();
auto& convCommon = param->common;
const int weightSize = convCommon->kernelX * convCommon->kernelY * convCommon->outputCount *
convCommon->inputCount / convCommon->group;
param->weight.resize(weightSize);
::memset(param->weight.data(), 0, param->weight.size() * sizeof(float));
param->bias.resize(convCommon->outputCount);
::memset(param->bias.data(), 0, param->bias.size() * sizeof(float));
break;
}
case MNN::OpType_Scale: {
auto param = op->main.AsScale();
param->biasData.resize(param->channels);
param->scaleData.resize(param->channels);
for (int i = 0; i < param->channels; ++i) {
param->scaleData[i] = getRandValue();
param->biasData[i] = getRandValue();
}
break;
}
default:
break;
}
}
}
packMNNNet();
}
static std::random_device gDevice;
2019-04-17 10:49:11 +08:00
float Revert::getRandValue() {
return MIN_VALUE + (MAX_VALUE - MIN_VALUE) * gDevice() / RAND_MAX;
2019-04-17 10:49:11 +08:00
}
void Revert::randStart() {
}