MNN/source/backend/cpu/CPUDeconvolution.cpp

248 lines
10 KiB
C++
Raw Normal View History

2019-04-17 10:49:11 +08:00
//
// CPUDeconvolution.cpp
// MNN
//
// Created by MNN on 2018/07/20.
// Copyright © 2018, Alibaba Group Holding Limited
//
2020-02-26 09:57:17 +08:00
#include "CPUDeconvolution.hpp"
2019-12-27 22:16:57 +08:00
#include "core/BufferAllocator.hpp"
2020-02-26 09:57:17 +08:00
#include "CPUBackend.hpp"
2019-12-27 22:16:57 +08:00
#include "core/Concurrency.h"
#include "core/Macro.h"
#include "math/Matrix.hpp"
#include "core/TensorUtils.hpp"
2020-11-05 16:41:56 +08:00
#include "math/Vec.hpp"
#include "core/ConvolutionCommon.hpp"
2020-02-26 09:57:17 +08:00
#include "compute/CommonOptFunction.h"
#include "compute/ConvOpt.h"
#include "compute/DeconvolutionWithStride.hpp"
//#define MNN_OPEN_TIME_TRACE
2019-12-27 22:16:57 +08:00
#include <MNN/AutoTime.hpp>
2019-04-17 10:49:11 +08:00
2020-11-05 16:41:56 +08:00
using Vec4 = MNN::Math::Vec<float, 4>;
2019-04-17 10:49:11 +08:00
namespace MNN {
CPUDeconvolutionBasic::CPUDeconvolutionBasic(const Tensor* input, const Op* convOp, Backend* b)
2019-04-17 10:49:11 +08:00
: CPUConvolution(convOp->main_as_Convolution2D()->common(), b) {
mSrcCount = input->channel();
2019-04-17 10:49:11 +08:00
}
ErrorCode CPUDeconvolutionBasic::onResize(const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs) {
2019-04-17 10:49:11 +08:00
auto input = inputs[0];
auto output = outputs[0];
auto pad = ConvolutionCommon::convolutionTransposePad(input, output, mCommon);
mPadY = pad.second;
mPadX = pad.first;
2019-04-17 10:49:11 +08:00
return NO_ERROR;
}
CPUDeconvolutionCommon::CPUDeconvolutionCommon(const Tensor* input, const Op* convOp, Backend* b)
: CPUDeconvolutionBasic(input, convOp, b) {
auto conv2D = convOp->main_as_Convolution2D();
int outputCount = mCommon->outputCount();
mBias.reset(Tensor::createDevice<float>(std::vector<int>{ALIGN_UP4(outputCount)}));
bool success = b->onAcquireBuffer(mBias.get(), Backend::STATIC);
if (!success) {
mValid = false;
return;
}
::memset(mBias->host<float>(), 0, mBias->size());
::memcpy(mBias->host<float>(), conv2D->bias()->data(), conv2D->bias()->size() * sizeof(float));
}
CPUDeconvolutionCommon::~CPUDeconvolutionCommon() {
backend()->onReleaseBuffer(mBias.get(), Backend::STATIC);
}
static void _transformWeight(const float* tempWeight, float* dest, int outputCount, int srcCount, int fh, int fw,
float* cache) {
2020-07-04 01:21:30 +08:00
auto outputC4 = UP_DIV(outputCount, 4);
// c, n, h, w-> c, n/4 * 4, h, w
for (int c=0; c<srcCount; ++c) {
auto dst = cache + c * outputC4 * fw * fh * 4;
auto src = tempWeight + c * outputCount * fw * fh;
MNNPackC4(dst, src, fw*fh, outputCount);
}
2020-07-04 01:21:30 +08:00
//printf("%d - %d - %d - %d\n", outputCount, srcCount, fh, fw);
MNNPackForMatMul_B(dest, cache, outputC4 * fw * fh * 4, srcCount, false);
}
CPUDeconvolution::CPUDeconvolution(const Tensor* input, const Op* convOp, Backend* backend)
: MNN::CPUDeconvolutionCommon(input, convOp, backend) {
2019-04-17 10:49:11 +08:00
auto layer = convOp->main_as_Convolution2D()->common();
2020-11-05 16:41:56 +08:00
const float* tempWeight = nullptr;
int tempWeightSize = 0;
std::shared_ptr<ConvolutionCommon::Int8Common> quanCommon;
ConvolutionCommon::getConvParameters(&quanCommon, convOp->main_as_Convolution2D(), &tempWeight, &tempWeightSize);
2019-04-17 10:49:11 +08:00
int fw = layer->kernelX();
int fh = layer->kernelY();
int srcCount = mSrcCount;
2020-07-04 01:21:30 +08:00
int eP, lP, hP;
MNNGetMatMulPackMode(&eP, &lP, &hP);
auto outputAlign = ALIGN_UP4(layer->outputCount()) * fw * fh;
mWeight.reset(Tensor::createDevice<float>(std::vector<int>{UP_DIV(outputAlign, hP), srcCount, hP}));
std::shared_ptr<Tensor> cache(Tensor::createDevice<float>({outputAlign * srcCount}));
bool success = backend->onAcquireBuffer(mWeight.get(), Backend::STATIC) &&
backend->onAcquireBuffer(cache.get(), Backend::STATIC);
2019-04-17 10:49:11 +08:00
if (!success) {
mValid = false;
return;
}
float* dest = mWeight->host<float>();
MNN_ASSERT(nullptr != dest);
int outputCount = layer->outputCount();
_transformWeight(tempWeight, dest, outputCount, srcCount, fh, fw, cache->host<float>());
backend->onReleaseBuffer(cache.get(), Backend::STATIC);
mOrigin.reset(new CPUDeconvolutionOrigin(input, convOp, backend));
2019-04-17 10:49:11 +08:00
}
CPUDeconvolution::~CPUDeconvolution() {
backend()->onReleaseBuffer(mWeight.get(), Backend::STATIC);
}
ErrorCode CPUDeconvolutionOrigin::onResize(const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs) {
CPUDeconvolutionBasic::onResize(inputs, outputs);
2019-04-17 10:49:11 +08:00
auto input = inputs[0];
auto output = outputs[0];
auto oc = output->channel();
if (ALIGN_UP4(oc) != inputs[2]->length(0)) {
return INPUT_DATA_ERROR;
}
2019-04-17 10:49:11 +08:00
auto ocC4 = UP_DIV(output->channel(), 4);
auto icC4 = UP_DIV(input->channel(), 4);
auto kw = mCommon->kernelX();
auto kh = mCommon->kernelY();
auto dilateX = mCommon->dilateX();
auto dilateY = mCommon->dilateY();
auto strideX = mCommon->strideX();
auto strideY = mCommon->strideY();
auto padX = mPadX;
auto padY = mPadY;
auto width = input->width();
auto height = input->height();
auto src_height = output->height();
auto src_width = output->width();
2019-04-17 10:49:11 +08:00
auto kernelCount = ocC4 * mCommon->kernelX() * mCommon->kernelY();
2020-02-26 09:57:17 +08:00
mPreFunctions.clear();
mPostFunctions.clear();
auto plane = width * height;
const int maxDepth = 5;
2020-07-04 01:21:30 +08:00
std::shared_ptr<Tensor> tempColTotalBuffer(Tensor::createDevice<float>({kernelCount, plane, 4}));
auto res = backend()->onAcquireBuffer(tempColTotalBuffer.get(), Backend::DYNAMIC);
2019-04-17 10:49:11 +08:00
if (!res) {
return OUT_OF_MEMORY;
}
auto colBufferPtr = tempColTotalBuffer->host<float>();
auto biasPtr = inputs[2]->host<float>();
2020-02-26 09:57:17 +08:00
auto inputPtr = input->host<float>();
std::shared_ptr<Tensor> tempInputBuffer(
2020-07-04 01:21:30 +08:00
Tensor::create<float>({icC4, plane, 4}, inputPtr));
std::shared_ptr<Tensor> tempInput(Tensor::createDevice<float>({icC4, plane, 4}));
2020-02-26 09:57:17 +08:00
auto threadNumber = ((CPUBackend*)backend())->threadNumber();
2020-07-04 01:21:30 +08:00
if (input->batch() != 1) {
2020-02-26 09:57:17 +08:00
res = backend()->onAcquireBuffer(tempInput.get(), Backend::DYNAMIC);
if (!res) {
return OUT_OF_MEMORY;
}
2020-02-26 09:57:17 +08:00
auto newInputPtr = tempInput->host<float>();
2020-07-04 01:21:30 +08:00
// Copy Batch
mPreFunctions.emplace_back(std::make_pair([newInputPtr, icC4, plane, threadNumber](const float* srcBatch, int tId) {
for (int c = tId; c<icC4; c+=threadNumber) {
auto srcDepth = srcBatch + c * plane * 4;
auto dstDepth = newInputPtr + c * plane * 4;
::memcpy(dstDepth, srcDepth, plane * 4 * sizeof(float));
2020-02-26 09:57:17 +08:00
}
}, threadNumber));
} else {
tempInput->buffer().host = (uint8_t*)inputPtr;
}
mMatMul.reset(new StrassenMatrixComputor(backend(), true, maxDepth));
2020-07-04 01:21:30 +08:00
mMatMul->onEncode({tempInput.get(), inputs[1]}, {tempColTotalBuffer.get()});
mPostFunctions.emplace_back(std::make_pair([colBufferPtr, ocC4, width, height, kh, kw, padY, padX, dilateY, dilateX, strideY,
strideX, threadNumber, src_width, src_height, plane, biasPtr, this](float* outputPtr, int tId) {
2020-02-26 09:57:17 +08:00
for (int z = (tId); z < ocC4; z += threadNumber) {
auto dstZ = outputPtr + z * src_height * src_width * 4;
2020-07-04 01:21:30 +08:00
auto srcZ = colBufferPtr + kw * kh * 4 * plane * z;
auto dstB = dstZ;
::memset(dstB, 0, 4 * src_width * src_height * sizeof(float));
auto srcB = srcZ;
for (int oy = 0; oy < height; ++oy) {
for (int ox = 0; ox < width; ++ox) {
int srcStartX = ox * strideX - padX;
int srcStartY = oy * strideY - padY;
2019-04-17 10:49:11 +08:00
2020-07-04 01:21:30 +08:00
int sfy = ALIMAX(0, (UP_DIV(-srcStartY, dilateY)));
int efy = ALIMIN(kh, UP_DIV(src_height - srcStartY, dilateY));
2019-04-17 10:49:11 +08:00
2020-07-04 01:21:30 +08:00
int sfx = ALIMAX(0, (UP_DIV(-srcStartX, dilateX)));
int efx = ALIMIN(kw, UP_DIV(src_width - srcStartX, dilateX));
2019-04-17 10:49:11 +08:00
2020-07-04 01:21:30 +08:00
auto dstStart = dstB + srcStartX * 4 + srcStartY * src_width * 4;
auto srcStart = srcB + 4 * (ox + oy * width);
2019-04-17 10:49:11 +08:00
2020-07-04 01:21:30 +08:00
for (int fy = sfy; fy < efy; ++fy) {
auto dstY = dstStart + fy * 4 * dilateY * src_width;
auto srcY = srcStart + fy * kw * plane * 4;
for (int fx = sfx; fx < efx; ++fx) {
auto dstX = dstY + fx * dilateX * 4;
auto srcX = srcY + fx * plane * 4;
Vec4::save(dstX, Vec4::load(dstX) + Vec4::load(srcX));
2019-04-17 10:49:11 +08:00
}
}
}
}
2020-07-04 01:21:30 +08:00
mPostFunction(dstZ, biasPtr + 4 * z, src_height * src_width, 1);
2020-02-26 09:57:17 +08:00
}
}, threadNumber));
if (tempInput->host<float>() != inputPtr) {
backend()->onReleaseBuffer(tempInput.get(), Backend::DYNAMIC);
}
backend()->onReleaseBuffer(tempColTotalBuffer.get(), Backend::DYNAMIC);
2019-04-17 10:49:11 +08:00
return NO_ERROR;
}
ErrorCode CPUDeconvolutionOrigin::onExecute(const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs) {
2020-07-04 01:21:30 +08:00
auto batch = inputs[0]->batch();
for (int i=0; i<batch; ++i) {
auto inputPtr = inputs[0]->host<float>() + i * inputs[0]->stride(0);
auto outputPtr = outputs[0]->host<float>() + i * outputs[0]->stride(0);
for (auto& unit : mPreFunctions) {
MNN_CONCURRENCY_BEGIN(tId, unit.second) {
2020-11-05 16:41:56 +08:00
unit.first(inputPtr, (int)tId);
2020-07-04 01:21:30 +08:00
}
MNN_CONCURRENCY_END();
}
2020-07-04 01:21:30 +08:00
mMatMul->onExecute();
for (auto& unit : mPostFunctions) {
MNN_CONCURRENCY_BEGIN(tId, unit.second) {
2020-11-05 16:41:56 +08:00
unit.first(outputPtr, (int)tId);
2020-07-04 01:21:30 +08:00
}
MNN_CONCURRENCY_END();
2019-04-17 10:49:11 +08:00
}
}
return NO_ERROR;
}
class CPUDeconvolutionCreator : public CPUBackend::Creator {
public:
virtual Execution* onCreate(const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs,
const MNN::Op* op, Backend* backend) const {
auto convOp = op->main_as_Convolution2D();
auto common = convOp->common();
if (common->strideY() > 1 || common->strideX() > 1) {
if (common->dilateX() == 1 && common->dilateY() == 1) {
return new DeconvolutionWithStride(inputs[0], op, backend);
2019-04-17 10:49:11 +08:00
}
}
return new CPUDeconvolution(inputs[0], op, backend);
2019-04-17 10:49:11 +08:00
}
};
REGISTER_CPU_OP_CREATOR(CPUDeconvolutionCreator, OpType_Deconvolution);
} // namespace MNN