2019-04-17 10:49:11 +08:00
|
|
|
//
|
|
|
|
// CPURelu.cpp
|
|
|
|
// MNN
|
|
|
|
//
|
|
|
|
// Created by MNN on 2018/07/15.
|
|
|
|
// Copyright © 2018, Alibaba Group Holding Limited
|
|
|
|
//
|
|
|
|
|
2019-12-27 22:16:57 +08:00
|
|
|
#include "backend/cpu/CPURelu.hpp"
|
|
|
|
#include "backend/cpu/CPUBackend.hpp"
|
|
|
|
#include "backend/cpu/compute/CommonOptFunction.h"
|
|
|
|
#include "core/Macro.h"
|
2020-02-26 09:57:17 +08:00
|
|
|
#include "core/Concurrency.h"
|
|
|
|
#include "CPUBackend.hpp"
|
|
|
|
#include <string.h>
|
2019-04-17 10:49:11 +08:00
|
|
|
namespace MNN {
|
|
|
|
ErrorCode CPURelu::onExecute(const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs) {
|
|
|
|
auto& ib = inputs[0]->buffer();
|
|
|
|
auto& ob = outputs[0]->buffer();
|
|
|
|
|
|
|
|
const float* srcO = (const float*)ib.host;
|
|
|
|
float* dstO = (float*)ob.host;
|
|
|
|
auto size = inputs[0]->size() / sizeof(float);
|
2020-02-26 09:57:17 +08:00
|
|
|
auto numberThread = ((CPUBackend*)backend())->threadNumber();
|
2021-01-06 16:29:37 +08:00
|
|
|
int sizeQuad = size / 4;
|
|
|
|
int remain = sizeQuad * 4;
|
2020-02-26 09:57:17 +08:00
|
|
|
int sizeDivide = sizeQuad / numberThread;
|
|
|
|
if (sizeQuad > 0) {
|
|
|
|
MNN_CONCURRENCY_BEGIN(tId, numberThread) {
|
|
|
|
int number = sizeDivide;
|
|
|
|
if (tId == numberThread - 1) {
|
|
|
|
number = sizeQuad - tId * sizeDivide;
|
|
|
|
}
|
|
|
|
MNNReluWithSlope(dstO + 4 * tId * sizeDivide, srcO + 4 * tId * sizeDivide, number, mSlope);
|
|
|
|
}
|
|
|
|
MNN_CONCURRENCY_END();
|
|
|
|
}
|
|
|
|
for (int j = remain; j < size; ++j) {
|
|
|
|
if (srcO[j] < 0) {
|
|
|
|
dstO[j] = srcO[j] * mSlope;
|
|
|
|
} else {
|
|
|
|
dstO[j] = srcO[j];
|
|
|
|
}
|
2019-04-17 10:49:11 +08:00
|
|
|
}
|
|
|
|
return NO_ERROR;
|
|
|
|
}
|
|
|
|
|
|
|
|
ErrorCode CPURelu6::onExecute(const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs) {
|
|
|
|
auto& ib = inputs[0]->buffer();
|
|
|
|
auto& ob = outputs[0]->buffer();
|
|
|
|
|
|
|
|
const float* srcO = (const float*)ib.host;
|
|
|
|
float* dstO = (float*)ob.host;
|
2020-02-26 09:57:17 +08:00
|
|
|
auto size = inputs[0]->elementSize();
|
|
|
|
auto numberThread = ((CPUBackend*)backend())->threadNumber();
|
|
|
|
auto sizeQuad = size / 4;
|
|
|
|
auto remain = sizeQuad * 4;
|
|
|
|
int sizeDivide = sizeQuad / numberThread;
|
|
|
|
std::vector<float> bias = {0.0f, 0.0f, 0.0f, 0.0f};
|
|
|
|
MNN_CONCURRENCY_BEGIN(tId, numberThread) {
|
|
|
|
int number = sizeDivide;
|
|
|
|
if (tId == numberThread - 1) {
|
|
|
|
number = sizeQuad - tId * sizeDivide;
|
|
|
|
}
|
2020-07-01 19:29:06 +08:00
|
|
|
MNNAxByClampBroadcastC4(dstO + tId * sizeDivide * 4, srcO + tId * sizeDivide * 4, bias.data(), number, 0, 0, 1, mParam.data());
|
2020-02-26 09:57:17 +08:00
|
|
|
}
|
|
|
|
MNN_CONCURRENCY_END();
|
2020-07-01 19:29:06 +08:00
|
|
|
MNNAxByClamp(dstO + remain, srcO + remain, srcO + remain, size - remain, 0, 0, 0, 1, mParam.data());
|
2019-04-17 10:49:11 +08:00
|
|
|
return NO_ERROR;
|
|
|
|
}
|
|
|
|
|
|
|
|
CPUPRelu::CPUPRelu(Backend* b, const Op* op) : MNN::Execution(b) {
|
|
|
|
auto c = op->main_as_PRelu();
|
|
|
|
mSlope.reset(ALIGN_UP4(c->slopeCount()));
|
|
|
|
mSlope.clear();
|
|
|
|
::memcpy(mSlope.get(), c->slope()->data(), c->slopeCount() * sizeof(float));
|
|
|
|
}
|
|
|
|
|
|
|
|
ErrorCode CPUPRelu::onExecute(const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs) {
|
|
|
|
auto& ib = inputs[0]->buffer();
|
|
|
|
auto& ob = outputs[0]->buffer();
|
2020-11-05 16:41:56 +08:00
|
|
|
int sizeQuad = 1;
|
|
|
|
for (int i=2; i<ib.dimensions; ++i) {
|
|
|
|
sizeQuad *= ib.dim[i].extent;
|
|
|
|
}
|
2019-04-17 10:49:11 +08:00
|
|
|
const int channel = ib.dim[1].extent;
|
|
|
|
const int batch = ib.dim[0].extent;
|
|
|
|
const int depthQuad = UP_DIV(channel, 4);
|
|
|
|
const float* srcO = (const float*)ib.host;
|
|
|
|
float* dstO = (float*)ob.host;
|
2020-02-26 09:57:17 +08:00
|
|
|
auto totalCount = batch * depthQuad;
|
|
|
|
auto numberThread = ((CPUBackend*)backend())->threadNumber();
|
|
|
|
MNN_CONCURRENCY_BEGIN(tId, numberThread) {
|
|
|
|
for (int b=tId; b<totalCount; b+=numberThread) {
|
|
|
|
auto c = b % depthQuad;
|
|
|
|
MNNReluWithSlopeChannel(dstO + sizeQuad * 4 * b, srcO + sizeQuad * 4 * b, mSlope.get() + 4 * c, sizeQuad, 1);
|
|
|
|
}
|
2019-04-17 10:49:11 +08:00
|
|
|
}
|
2020-02-26 09:57:17 +08:00
|
|
|
MNN_CONCURRENCY_END();
|
2019-04-17 10:49:11 +08:00
|
|
|
return NO_ERROR;
|
|
|
|
}
|
|
|
|
|
|
|
|
class CPUReluCreator : public CPUBackend::Creator {
|
|
|
|
public:
|
|
|
|
virtual Execution* onCreate(const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs,
|
|
|
|
const MNN::Op* op, Backend* backend) const {
|
|
|
|
if (op->type() == OpType_ReLU) {
|
2019-06-05 10:45:59 +08:00
|
|
|
auto slope = 0.0f;
|
|
|
|
if (nullptr != op->main() && OpParameter_Relu == op->main_type()) {
|
|
|
|
slope = op->main_as_Relu()->slope();
|
|
|
|
}
|
|
|
|
return new CPURelu(backend, slope);
|
2019-04-17 10:49:11 +08:00
|
|
|
}
|
|
|
|
MNN_ASSERT(op->type() == OpType_PReLU);
|
|
|
|
if (op->main_as_PRelu()->slopeCount() == 1) {
|
|
|
|
return new CPURelu(backend, op->main_as_PRelu()->slope()->data()[0]);
|
|
|
|
}
|
|
|
|
return new CPUPRelu(backend, op);
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
class CPURelu6Creator : public CPUBackend::Creator {
|
|
|
|
public:
|
|
|
|
virtual Execution* onCreate(const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs,
|
|
|
|
const MNN::Op* op, Backend* backend) const {
|
2020-07-01 19:29:06 +08:00
|
|
|
float minV = 0.0f;
|
|
|
|
float maxV = 6.0f;
|
|
|
|
if (nullptr != op->main()) {
|
|
|
|
auto p = op->main_as_Relu6();
|
|
|
|
minV = p->minValue();
|
|
|
|
maxV = p->maxValue();
|
|
|
|
}
|
|
|
|
return new CPURelu6(maxV, minV, backend);
|
2019-04-17 10:49:11 +08:00
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
REGISTER_CPU_OP_CREATOR(CPUReluCreator, OpType_ReLU);
|
|
|
|
REGISTER_CPU_OP_CREATOR(CPUReluCreator, OpType_PReLU);
|
|
|
|
REGISTER_CPU_OP_CREATOR(CPURelu6Creator, OpType_ReLU6);
|
|
|
|
} // namespace MNN
|