mirror of https://github.com/alibaba/MNN.git
151 lines
6.4 KiB
C++
151 lines
6.4 KiB
C++
|
//
|
||
|
// UnaryExecution.cpp
|
||
|
// MNN
|
||
|
//
|
||
|
// Created by MNN on 2019/02/28.
|
||
|
// Copyright © 2018, Alibaba Group Holding Limited
|
||
|
//
|
||
|
|
||
|
#include "backend/opencl/execution/image/UnaryExecution.hpp"
|
||
|
#include "core/Macro.h"
|
||
|
#include "core/TensorUtils.hpp"
|
||
|
#include "backend/opencl/core/OpenCLBackend.hpp"
|
||
|
|
||
|
namespace MNN {
|
||
|
namespace OpenCL {
|
||
|
|
||
|
UnaryExecution::UnaryExecution(const std::string& compute, Backend* backend) : Execution(backend) {
|
||
|
auto openCLBackend = static_cast<OpenCLBackend*>(backend);
|
||
|
std::set<std::string> buildOptions;
|
||
|
buildOptions.emplace(" -DOPERATOR=" + compute);
|
||
|
// FUNC_PRINT_ALL(buildOptions.begin()->c_str(), s);
|
||
|
auto runtime = openCLBackend->getOpenCLRuntime();
|
||
|
mKernel = runtime->buildKernel("unary", "unary", buildOptions);
|
||
|
mMaxWorkGroupSize = static_cast<uint32_t>(runtime->getMaxWorkGroupSize(mKernel));
|
||
|
}
|
||
|
ErrorCode UnaryExecution::onResize(const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs) {
|
||
|
Tensor* input = inputs[0];
|
||
|
Tensor* output = outputs[0];
|
||
|
auto openCLBackend = static_cast<OpenCLBackend*>(backend());
|
||
|
|
||
|
std::vector<int> inputShape = tensorShapeFormat(input);
|
||
|
std::vector<int> outputShape = tensorShapeFormat(output);
|
||
|
|
||
|
int batch = outputShape.at(0);
|
||
|
int outputHeight = outputShape.at(1);
|
||
|
int outputWidth = outputShape.at(2);
|
||
|
int channels = outputShape.at(3);
|
||
|
|
||
|
int channelBlocks = (channels + 3) / 4;
|
||
|
|
||
|
mGlobalWorkSize = {
|
||
|
static_cast<uint32_t>(channelBlocks),
|
||
|
static_cast<uint32_t>(outputWidth),
|
||
|
static_cast<uint32_t>(batch * outputHeight),
|
||
|
};
|
||
|
|
||
|
uint32_t idx = 0;
|
||
|
mKernel.setArg(idx++, mGlobalWorkSize[0]);
|
||
|
mKernel.setArg(idx++, mGlobalWorkSize[1]);
|
||
|
mKernel.setArg(idx++, mGlobalWorkSize[2]);
|
||
|
mKernel.setArg(idx++, openCLImage(input));
|
||
|
mKernel.setArg(idx++, openCLImage(output));
|
||
|
|
||
|
std::string name = "unary";
|
||
|
const std::vector<uint32_t> lws =
|
||
|
localWS3DDefault(mGlobalWorkSize, mMaxWorkGroupSize, openCLBackend->getOpenCLRuntime(), name, mKernel).first;
|
||
|
mLocalSize = lws;
|
||
|
return NO_ERROR;
|
||
|
}
|
||
|
|
||
|
ErrorCode UnaryExecution::onExecute(const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs) {
|
||
|
#ifdef LOG_VERBOSE
|
||
|
MNN_PRINT("start UnaryExecution onExecute...");
|
||
|
#endif
|
||
|
auto mOpenCLBackend = static_cast<OpenCLBackend*>(backend());
|
||
|
|
||
|
#ifdef ENABLE_OPENCL_TIME_PROFILER
|
||
|
cl::Event event;
|
||
|
run3DKernelDefault(mKernel, mGlobalWorkSize, mLocalSize,
|
||
|
mOpenCLBackend->getOpenCLRuntime(), &event);
|
||
|
|
||
|
int costTime = (int)mOpenCLBackend->getOpenCLRuntime()->getCostTime(&event);
|
||
|
MNN_PRINT("kernel cost:%d us Unary\n",costTime);
|
||
|
#else
|
||
|
run3DKernelDefault(mKernel, mGlobalWorkSize, mLocalSize,
|
||
|
mOpenCLBackend->getOpenCLRuntime());
|
||
|
#endif
|
||
|
|
||
|
#ifdef LOG_VERBOSE
|
||
|
MNN_PRINT("end UnaryExecution onExecute...");
|
||
|
#endif
|
||
|
return NO_ERROR;
|
||
|
}
|
||
|
|
||
|
class UnaryCreator : public OpenCLBackend::Creator {
|
||
|
public:
|
||
|
virtual Execution* onCreate(const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs,
|
||
|
const MNN::Op* op, Backend* backend) const override {
|
||
|
if (op->type() == OpType_UnaryOp) {
|
||
|
switch (op->main_as_UnaryOp()->opType()) {
|
||
|
case UnaryOpOperation_SQUARE:
|
||
|
return new UnaryExecution("in*in", backend);
|
||
|
case UnaryOpOperation_ERF:
|
||
|
return new UnaryExecution("erf(convert_float4(in))", backend);
|
||
|
case UnaryOpOperation_ERFC:
|
||
|
return new UnaryExecution("erfc(convert_float4(in))", backend);
|
||
|
case UnaryOpOperation_SQRT:
|
||
|
return new UnaryExecution("sqrt(convert_float4(in))", backend);
|
||
|
case UnaryOpOperation_RSQRT:
|
||
|
return new UnaryExecution("rsqrt(convert_float4(in))", backend);
|
||
|
case UnaryOpOperation_ABS:
|
||
|
return new UnaryExecution("fabs(convert_float4(in))", backend);
|
||
|
case UnaryOpOperation_SIN:
|
||
|
return new UnaryExecution("sin(convert_float4(in))", backend);
|
||
|
case UnaryOpOperation_COS:
|
||
|
return new UnaryExecution("cos(convert_float4(in))", backend);
|
||
|
case UnaryOpOperation_SIGN:
|
||
|
return new UnaryExecution("sign(convert_float4(in))", backend);
|
||
|
case UnaryOpOperation_EXP:
|
||
|
return new UnaryExecution("exp(convert_float4(in))", backend);
|
||
|
case UnaryOpOperation_NEG:
|
||
|
return new UnaryExecution("-(in)", backend);
|
||
|
case UnaryOpOperation_TAN:
|
||
|
return new UnaryExecution("tan(convert_float4(in))", backend);
|
||
|
case UnaryOpOperation_CEIL:
|
||
|
return new UnaryExecution("ceil(convert_float4(in))", backend);
|
||
|
case UnaryOpOperation_LOG1P:
|
||
|
return new UnaryExecution("log1p(convert_float4(in))", backend);
|
||
|
case UnaryOpOperation_FLOOR:
|
||
|
return new UnaryExecution("floor(convert_float4(in))", backend);
|
||
|
case UnaryOpOperation_ROUND:
|
||
|
return new UnaryExecution("round(convert_float4(in))", backend);
|
||
|
case UnaryOpOperation_SIGMOID:
|
||
|
return new UnaryExecution("native_recip((float4)1+native_exp(convert_float4(-in)))", backend);
|
||
|
case UnaryOpOperation_TANH:
|
||
|
return new UnaryExecution("tanh(convert_float4(in))", backend);
|
||
|
case UnaryOpOperation_RECIPROCAL:
|
||
|
return new UnaryExecution("native_recip(convert_float4(in))", backend);
|
||
|
case UnaryOpOperation_LOG:
|
||
|
return new UnaryExecution("native_log(convert_float4(in+(FLOAT4)((FLOAT)0.0000001)))", backend);
|
||
|
default:
|
||
|
break;
|
||
|
}
|
||
|
return nullptr;
|
||
|
}
|
||
|
if (op->type() == OpType_Sigmoid) {
|
||
|
return new UnaryExecution("native_recip((float4)(1)+native_exp(convert_float4(-in)))", backend);
|
||
|
}
|
||
|
if (op->type() == OpType_TanH) {
|
||
|
return new UnaryExecution("tanh(convert_float4(in))", backend);
|
||
|
}
|
||
|
return nullptr;
|
||
|
}
|
||
|
};
|
||
|
|
||
|
OpenCLCreatorRegister<UnaryCreator> __UnaryExecution(OpType_UnaryOp, IMAGE);
|
||
|
OpenCLCreatorRegister<UnaryCreator> __SigmoidExecution(OpType_Sigmoid, IMAGE);
|
||
|
OpenCLCreatorRegister<UnaryCreator> __TanhExecution(OpType_TanH, IMAGE);
|
||
|
} // namespace OpenCL
|
||
|
} // namespace MNN
|