MNN/source/backend/opencl/execution/image/UnaryExecution.cpp

151 lines
6.4 KiB
C++
Raw Normal View History

2019-04-17 10:49:11 +08:00
//
// UnaryExecution.cpp
// MNN
//
// Created by MNN on 2019/02/28.
// Copyright © 2018, Alibaba Group Holding Limited
//
#include "backend/opencl/execution/image/UnaryExecution.hpp"
2019-12-27 22:16:57 +08:00
#include "core/Macro.h"
#include "core/TensorUtils.hpp"
#include "backend/opencl/core/OpenCLBackend.hpp"
2019-04-17 10:49:11 +08:00
namespace MNN {
namespace OpenCL {
UnaryExecution::UnaryExecution(const std::string& compute, Backend* backend) : Execution(backend) {
auto openCLBackend = static_cast<OpenCLBackend*>(backend);
std::set<std::string> buildOptions;
buildOptions.emplace(" -DOPERATOR=" + compute);
// FUNC_PRINT_ALL(buildOptions.begin()->c_str(), s);
auto runtime = openCLBackend->getOpenCLRuntime();
mKernel = runtime->buildKernel("unary", "unary", buildOptions);
mMaxWorkGroupSize = static_cast<uint32_t>(runtime->getMaxWorkGroupSize(mKernel));
}
2019-12-27 22:16:57 +08:00
ErrorCode UnaryExecution::onResize(const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs) {
2019-04-17 10:49:11 +08:00
Tensor* input = inputs[0];
Tensor* output = outputs[0];
auto openCLBackend = static_cast<OpenCLBackend*>(backend());
std::vector<int> inputShape = tensorShapeFormat(input);
std::vector<int> outputShape = tensorShapeFormat(output);
2019-12-27 22:16:57 +08:00
int batch = outputShape.at(0);
int outputHeight = outputShape.at(1);
int outputWidth = outputShape.at(2);
int channels = outputShape.at(3);
2019-04-17 10:49:11 +08:00
2019-12-27 22:16:57 +08:00
int channelBlocks = (channels + 3) / 4;
2019-04-17 10:49:11 +08:00
2019-12-27 22:16:57 +08:00
mGlobalWorkSize = {
static_cast<uint32_t>(channelBlocks),
static_cast<uint32_t>(outputWidth),
static_cast<uint32_t>(batch * outputHeight),
};
2019-04-17 10:49:11 +08:00
2019-12-27 22:16:57 +08:00
uint32_t idx = 0;
mKernel.setArg(idx++, mGlobalWorkSize[0]);
mKernel.setArg(idx++, mGlobalWorkSize[1]);
mKernel.setArg(idx++, mGlobalWorkSize[2]);
mKernel.setArg(idx++, openCLImage(input));
mKernel.setArg(idx++, openCLImage(output));
2019-04-17 10:49:11 +08:00
2020-11-05 16:41:56 +08:00
std::string name = "unary";
2019-04-17 10:49:11 +08:00
const std::vector<uint32_t> lws =
localWS3DDefault(mGlobalWorkSize, mMaxWorkGroupSize, openCLBackend->getOpenCLRuntime(), name, mKernel).first;
2019-12-27 22:16:57 +08:00
mLocalSize = lws;
return NO_ERROR;
}
ErrorCode UnaryExecution::onExecute(const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs) {
#ifdef LOG_VERBOSE
MNN_PRINT("start UnaryExecution onExecute...");
#endif
auto mOpenCLBackend = static_cast<OpenCLBackend*>(backend());
#ifdef ENABLE_OPENCL_TIME_PROFILER
cl::Event event;
run3DKernelDefault(mKernel, mGlobalWorkSize, mLocalSize,
mOpenCLBackend->getOpenCLRuntime(), &event);
int costTime = (int)mOpenCLBackend->getOpenCLRuntime()->getCostTime(&event);
MNN_PRINT("kernel cost:%d us Unary\n",costTime);
#else
run3DKernelDefault(mKernel, mGlobalWorkSize, mLocalSize,
mOpenCLBackend->getOpenCLRuntime());
#endif
2019-04-17 10:49:11 +08:00
#ifdef LOG_VERBOSE
MNN_PRINT("end UnaryExecution onExecute...");
#endif
return NO_ERROR;
}
2019-12-27 22:16:57 +08:00
2019-04-17 10:49:11 +08:00
class UnaryCreator : public OpenCLBackend::Creator {
public:
virtual Execution* onCreate(const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs,
const MNN::Op* op, Backend* backend) const override {
if (op->type() == OpType_UnaryOp) {
switch (op->main_as_UnaryOp()->opType()) {
case UnaryOpOperation_SQUARE:
return new UnaryExecution("in*in", backend);
case UnaryOpOperation_ERF:
2020-11-05 16:41:56 +08:00
return new UnaryExecution("erf(convert_float4(in))", backend);
case UnaryOpOperation_ERFC:
2020-11-05 16:41:56 +08:00
return new UnaryExecution("erfc(convert_float4(in))", backend);
case UnaryOpOperation_SQRT:
2020-11-05 16:41:56 +08:00
return new UnaryExecution("sqrt(convert_float4(in))", backend);
2019-04-17 10:49:11 +08:00
case UnaryOpOperation_RSQRT:
2020-11-05 16:41:56 +08:00
return new UnaryExecution("rsqrt(convert_float4(in))", backend);
2019-04-17 10:49:11 +08:00
case UnaryOpOperation_ABS:
2020-11-05 16:41:56 +08:00
return new UnaryExecution("fabs(convert_float4(in))", backend);
case UnaryOpOperation_SIN:
2020-11-05 16:41:56 +08:00
return new UnaryExecution("sin(convert_float4(in))", backend);
case UnaryOpOperation_COS:
2020-11-05 16:41:56 +08:00
return new UnaryExecution("cos(convert_float4(in))", backend);
case UnaryOpOperation_SIGN:
2020-11-05 16:41:56 +08:00
return new UnaryExecution("sign(convert_float4(in))", backend);
case UnaryOpOperation_EXP:
2020-11-05 16:41:56 +08:00
return new UnaryExecution("exp(convert_float4(in))", backend);
case UnaryOpOperation_NEG:
return new UnaryExecution("-(in)", backend);
case UnaryOpOperation_TAN:
2020-11-05 16:41:56 +08:00
return new UnaryExecution("tan(convert_float4(in))", backend);
case UnaryOpOperation_CEIL:
2020-11-05 16:41:56 +08:00
return new UnaryExecution("ceil(convert_float4(in))", backend);
case UnaryOpOperation_LOG1P:
2020-11-05 16:41:56 +08:00
return new UnaryExecution("log1p(convert_float4(in))", backend);
case UnaryOpOperation_FLOOR:
2020-11-05 16:41:56 +08:00
return new UnaryExecution("floor(convert_float4(in))", backend);
case UnaryOpOperation_ROUND:
2020-11-05 16:41:56 +08:00
return new UnaryExecution("round(convert_float4(in))", backend);
case UnaryOpOperation_SIGMOID:
return new UnaryExecution("native_recip((float4)1+native_exp(convert_float4(-in)))", backend);
case UnaryOpOperation_TANH:
return new UnaryExecution("tanh(convert_float4(in))", backend);
case UnaryOpOperation_RECIPROCAL:
2020-11-05 16:41:56 +08:00
return new UnaryExecution("native_recip(convert_float4(in))", backend);
case UnaryOpOperation_LOG:
2020-11-05 16:41:56 +08:00
return new UnaryExecution("native_log(convert_float4(in+(FLOAT4)((FLOAT)0.0000001)))", backend);
2019-04-17 10:49:11 +08:00
default:
break;
}
return nullptr;
}
if (op->type() == OpType_Sigmoid) {
2020-11-05 16:41:56 +08:00
return new UnaryExecution("native_recip((float4)(1)+native_exp(convert_float4(-in)))", backend);
2019-04-17 10:49:11 +08:00
}
if (op->type() == OpType_TanH) {
2020-11-05 16:41:56 +08:00
return new UnaryExecution("tanh(convert_float4(in))", backend);
2019-04-17 10:49:11 +08:00
}
return nullptr;
}
};
OpenCLCreatorRegister<UnaryCreator> __UnaryExecution(OpType_UnaryOp, IMAGE);
OpenCLCreatorRegister<UnaryCreator> __SigmoidExecution(OpType_Sigmoid, IMAGE);
OpenCLCreatorRegister<UnaryCreator> __TanhExecution(OpType_TanH, IMAGE);
2019-04-17 10:49:11 +08:00
} // namespace OpenCL
} // namespace MNN