MNN/source/geometry/GeometryTensorArray.cpp

442 lines
17 KiB
C++
Raw Normal View History

2021-01-06 16:29:37 +08:00
//
// GeometryTensorArray.cpp
// MNN
//
// Created by MNN on 2020/12/22.
// Copyright © 2018, Alibaba Group Holding Limited
//
#include "geometry/GeometryComputer.hpp"
#include "core/OpCommonUtils.hpp"
namespace MNN {
// get a pair <ElemOffset, ElemSize>
static std::pair<int, int> getElemSize(const Tensor* t, int index) {
auto des = TensorUtils::getDescribe(t);
auto shapes = des->tensorArrayAttr->elemShape;
int elemSize = 1;
if (des->tensorArrayAttr->isIdenticalShape) {
if (shapes.size() == 1) {
elemSize = 1;
std::for_each(shapes[0].begin(), shapes[0].end(), [&elemSize](int x) { elemSize *= x; });
return {index * elemSize, elemSize};
}
} else {
if (shapes.size() > index) {
int offset = 0;
for (int i = 0; i <= index; i++) {
elemSize = 1;
std::for_each(shapes[i].begin(), shapes[i].end(), [&elemSize](int x) { elemSize *= x; });
offset += elemSize;
}
return {offset - elemSize, elemSize};
}
}
MNN_ASSERT(false);
return {0, 0};
}
2021-02-07 10:45:07 +08:00
static bool isFirstWrite(const Tensor::InsideDescribe* des) {
if (des->tensorArrayAttr->elemShape.empty()) {
return true;
}
for (const auto& dim : des->tensorArrayAttr->elemShape[0]) {
if (dim < 0) {
return true;
}
}
return false;
}
2021-01-06 16:29:37 +08:00
class GeometryTensorArray : public GeometryComputer {
public:
virtual bool onCompute(const Op* op, const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs,
Context& context, CommandBuffer& res) const override {
2021-02-07 10:45:07 +08:00
if (TensorUtils::getDescribe(outputs[1])->tensorArrayAttr == nullptr) {
2021-01-06 16:29:37 +08:00
MNN_ASSERT(false);
return false;
}
2021-02-07 10:45:07 +08:00
if (TensorUtils::getDescribe(outputs[1])->tensorArrayAttr->arraySize > 0) {
auto type = outputs[1]->getType();
auto zeroConst = context.allocConst(op, {}, type);
if (type == halide_type_of<float>()) {
zeroConst->host<float>()[0] = 0.0;
} else {
zeroConst->host<int>()[0] = 0;
}
for (int i = 0; i < 2; i++) {
auto des = TensorUtils::getDescribe(outputs[i]);
des->memoryType = Tensor::InsideDescribe::MEMORY_VIRTUAL;
auto& regions = des->regions;
regions.resize(1);
regions[0].origin = zeroConst.get();
regions[0].size[0] = outputs[1]->elementSize();
regions[0].src.stride[0] = 0;
}
}
2021-01-06 16:29:37 +08:00
return true;
}
};
class GeometryTensorArraySize : public GeometryComputer {
public:
virtual bool onCompute(const Op* op, const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs,
Context& context, CommandBuffer& res) const override {
auto tensorArrayInput = inputs[1];
if (TensorUtils::getDescribe(tensorArrayInput)->tensorArrayAttr == nullptr) {
MNN_ASSERT(false);
return false;
}
auto output = outputs[0];
auto inputDes = TensorUtils::getDescribe(tensorArrayInput);
auto outputDes = TensorUtils::getDescribe(output);
outputDes->memoryType = Tensor::InsideDescribe::MEMORY_VIRTUAL;
outputDes->regions.resize(1);
auto& reg = outputDes->regions[0];
auto sizeConst = context.allocConst(op, {}, halide_type_of<int32_t>());
sizeConst->host<int>()[0] = inputDes->tensorArrayAttr->arraySize;
reg.origin = sizeConst.get();
reg.src.offset = 0;
reg.src.stride[0] = 1;
reg.src.stride[1] = 1;
reg.src.stride[2] = 1;
reg.dst.offset = 0;
reg.dst.stride[0] = 1;
reg.dst.stride[1] = 1;
reg.dst.stride[2] = 1;
reg.size[0] = 1;
reg.size[1] = 1;
reg.size[2] = 1;
return true;
}
};
class GeometryTensorArrayRead : public GeometryComputer {
public:
virtual bool onCompute(const Op* op, const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs,
Context& context, CommandBuffer& res) const override {
auto tensorArrayInput = inputs[2];
if (TensorUtils::getDescribe(tensorArrayInput)->tensorArrayAttr == nullptr) {
MNN_ASSERT(false);
return false;
}
auto output = outputs[0];
auto outputDes = TensorUtils::getDescribe(output);
outputDes->memoryType = Tensor::InsideDescribe::MEMORY_VIRTUAL;
outputDes->regions.resize(1);
auto& reg = outputDes->regions[0];
auto index = inputs[1]->host<uint32_t>()[0];
auto elemSize = getElemSize(tensorArrayInput, index);
reg.origin = tensorArrayInput;
reg.src.offset = elemSize.first;
reg.src.stride[0] = 1;
reg.src.stride[1] = 1;
reg.src.stride[2] = 1;
reg.dst.offset = 0;
reg.dst.stride[0] = 1;
reg.dst.stride[1] = 1;
reg.dst.stride[2] = 1;
reg.size[0] = elemSize.second;
reg.size[1] = 1;
reg.size[2] = 1;
return true;
}
};
class GeometryTensorArrayWrite : public GeometryComputer {
public:
virtual bool onCompute(const Op* op, const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs,
Context& context, CommandBuffer& res) const override {
auto tensorArrayInput = inputs[3];
auto inDes = TensorUtils::getDescribe(tensorArrayInput);
if (inDes->tensorArrayAttr == nullptr) {
MNN_ASSERT(false);
return false;
}
auto output = outputs[0];
auto outDes = TensorUtils::getDescribe(output);
outDes->memoryType = Tensor::InsideDescribe::MEMORY_VIRTUAL;
int oldSize = inDes->tensorArrayAttr->arraySize;
2021-02-07 10:45:07 +08:00
int writeIndex = inputs[1]->host<uint32_t>()[0];
2021-01-06 16:29:37 +08:00
auto elemSize = getElemSize(output, writeIndex);
int regionSize = (writeIndex > 0) + 1 + (oldSize - writeIndex - 1 > 0);
outDes->regions.resize(regionSize);
/*
src: [leftData][writeIndex][rightData]
dst: [leftData][writeTensor][rightData]
*/
// 1. write Tensor to dst TensorArray [must]
auto& writeTensorRegion = outDes->regions[0];
writeTensorRegion.origin = inputs[2];
writeTensorRegion.src.offset = 0;
writeTensorRegion.src.stride[0] = 1;
writeTensorRegion.src.stride[1] = 1;
writeTensorRegion.src.stride[2] = 1;
writeTensorRegion.dst.offset = elemSize.first;
writeTensorRegion.dst.stride[0] = 1;
writeTensorRegion.dst.stride[1] = 1;
writeTensorRegion.dst.stride[2] = 1;
writeTensorRegion.size[0] = elemSize.second;
writeTensorRegion.size[1] = 1;
writeTensorRegion.size[2] = 1;
if (regionSize == 1) {
return true;
}
// first write data, set pre zero
2021-02-07 10:45:07 +08:00
bool firstWrite = isFirstWrite(inDes);
2021-01-06 16:29:37 +08:00
if (firstWrite) {
auto type = tensorArrayInput->getType();
auto zeroConst = context.allocConst(op, {}, type);
if (type == halide_type_of<float>()) {
zeroConst->host<float>()[0] = 0.0;
} else {
zeroConst->host<int>()[0] = 0;
}
tensorArrayInput = zeroConst.get();
}
// 2. copy TensorArray leftData [optional]
if (writeIndex > 0) {
auto& leftDataRegion = outDes->regions[1];
leftDataRegion.origin = tensorArrayInput;
leftDataRegion.src.offset = 0;
leftDataRegion.src.stride[0] = !firstWrite;
leftDataRegion.src.stride[1] = 1;
leftDataRegion.src.stride[2] = 1;
leftDataRegion.dst.offset = 0;
leftDataRegion.dst.stride[0] = 1;
leftDataRegion.dst.stride[1] = 1;
leftDataRegion.dst.stride[2] = 1;
leftDataRegion.size[0] = elemSize.first;
leftDataRegion.size[1] = 1;
leftDataRegion.size[2] = 1;
}
// 3. copy TensorArray rightData [optional]
int rightSize = oldSize - writeIndex - 1;
if (rightSize > 0) {
auto last = getElemSize(output, oldSize-1);
int totalSize = last.first + last.second;
int offset = elemSize.first + elemSize.second;
auto& rightDataRegion = outDes->regions[1 + (writeIndex > 0)];
rightDataRegion.origin = tensorArrayInput;
rightDataRegion.src.offset = (!firstWrite) * offset;
rightDataRegion.src.stride[0] = !firstWrite;
rightDataRegion.src.stride[1] = 1;
rightDataRegion.src.stride[2] = 1;
rightDataRegion.dst.offset = offset;
rightDataRegion.dst.stride[0] = 1;
rightDataRegion.dst.stride[1] = 1;
rightDataRegion.dst.stride[2] = 1;
rightDataRegion.size[0] = totalSize - offset;
rightDataRegion.size[1] = 1;
rightDataRegion.size[2] = 1;
}
return true;
}
};
class GeometryTensorArrayGather : public GeometryComputer {
public:
virtual bool onCompute(const Op* op, const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs,
Context& context, CommandBuffer& res) const override {
auto tensorArrayInput = inputs[2];
auto inDes = TensorUtils::getDescribe(tensorArrayInput);
if (inDes->tensorArrayAttr == nullptr) {
return false;
}
auto indicesTensor = inputs[1];
std::vector<int> indices(indicesTensor->elementSize());
for (int i = 0; i < indices.size(); i++) {
indices[i] = indicesTensor->host<int>()[i];
}
auto output = outputs[0];
auto outputDes = TensorUtils::getDescribe(output);
outputDes->memoryType = Tensor::InsideDescribe::MEMORY_VIRTUAL;
outputDes->regions.resize(indices.size());
int arraySize = inDes->tensorArrayAttr->arraySize;
int dstOffset = 0;
for (int i = 0; i < indices.size(); i++) {
MNN_ASSERT(indices[i] < arraySize);
auto elemSize = getElemSize(tensorArrayInput, indices[i]);
auto& reg = outputDes->regions[i];
reg.origin = tensorArrayInput;
reg.src.offset = elemSize.first;
reg.src.stride[0] = 1;
reg.src.stride[1] = 1;
reg.src.stride[2] = 1;
reg.dst.offset = dstOffset;
reg.dst.stride[0] = 1;
reg.dst.stride[1] = 1;
reg.dst.stride[2] = 1;
reg.size[0] = elemSize.second;
reg.size[1] = 1;
reg.size[2] = 1;
dstOffset += elemSize.second;
}
return true;
}
};
class GeometryTensorArrayScatter : public GeometryComputer {
public:
virtual bool onCompute(const Op* op, const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs,
Context& context, CommandBuffer& res) const override {
auto tensorArrayInput = inputs[3];
auto inDes = TensorUtils::getDescribe(tensorArrayInput);
if (inDes->tensorArrayAttr == nullptr) {
return false;
}
MNN_ASSERT(inDes->tensorArrayAttr->isIdenticalShape);
int oldSize = inDes->tensorArrayAttr->arraySize;
auto output = outputs[0];
int elemSize = getElemSize(output, 0).second;
auto indicesTensor = inputs[1];
// tag index write or not
std::vector<bool> isWrite(oldSize, false);
// write index
std::vector<int> indices(indicesTensor->elementSize());
// not write index
std::vector<int> remains;
for (int i = 0; i < indices.size(); i++) {
indices[i] = indicesTensor->host<int>()[i];
if (i < oldSize) {
isWrite[i] = true;
}
}
for (int i = 0; i < oldSize; i++) {
if (!isWrite[i]) {
remains.push_back(i);
}
}
auto outputDes = TensorUtils::getDescribe(output);
outputDes->memoryType = Tensor::InsideDescribe::MEMORY_VIRTUAL;
outputDes->regions.resize(indices.size() + remains.size());
// write value by indices
for (int i = 0; i < indices.size(); i++) {
MNN_ASSERT(indices[i] < outputDes->tensorArrayAttr->arraySize);
auto& reg = outputDes->regions[i];
reg.origin = inputs[2];
reg.src.offset = i * elemSize;
reg.src.stride[0] = 1;
reg.src.stride[1] = 1;
reg.src.stride[2] = 1;
reg.dst.offset = indices[i] * elemSize;
reg.dst.stride[0] = 1;
reg.dst.stride[1] = 1;
reg.dst.stride[2] = 1;
reg.size[0] = elemSize;
reg.size[1] = 1;
reg.size[2] = 1;
}
if (remains.empty()) {
return true;
}
// first write data, set zero
2021-02-07 10:45:07 +08:00
bool firstWrite = isFirstWrite(inDes);
2021-01-06 16:29:37 +08:00
if (firstWrite) {
auto type = tensorArrayInput->getType();
auto zeroConst = context.allocConst(op, {}, type);
if (type == halide_type_of<float>()) {
zeroConst->host<float>()[0] = 0.0;
} else {
zeroConst->host<int>()[0] = 0;
}
tensorArrayInput = zeroConst.get();
}
// copy not write value by remains
for (int i = 0; i < remains.size(); i++) {
auto& reg = outputDes->regions[indices.size() + i];
reg.origin = tensorArrayInput;
reg.src.offset = (!firstWrite) * remains[i] * elemSize;
reg.src.stride[0] = !firstWrite;
reg.src.stride[1] = 1;
reg.src.stride[2] = 1;
reg.dst.offset = remains[i] * elemSize;
reg.dst.stride[0] = 1;
reg.dst.stride[1] = 1;
reg.dst.stride[2] = 1;
reg.size[0] = elemSize;
reg.size[1] = 1;
reg.size[2] = 1;
}
return true;
}
};
class GeometryTensorArraySplit : public GeometryComputer {
public:
virtual bool onCompute(const Op* op, const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs,
Context& context, CommandBuffer& res) const override {
auto output = outputs[0];
auto outDes = TensorUtils::getDescribe(output);
outDes->memoryType = Tensor::InsideDescribe::MEMORY_VIRTUAL;
outDes->regions.resize(1);
auto& reg = outDes->regions[0];
reg.origin = inputs[1];
reg.src.offset = 0;
reg.src.stride[0] = 1;
reg.src.stride[1] = 1;
reg.src.stride[2] = 1;
reg.dst.offset = 0;
reg.dst.stride[0] = 1;
reg.dst.stride[1] = 1;
reg.dst.stride[2] = 1;
reg.size[0] = inputs[1]->elementSize();
reg.size[1] = 1;
reg.size[2] = 1;
return true;
}
};
class GeometryTensorArrayConcat : public GeometryComputer {
public:
virtual bool onCompute(const Op* op, const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs,
Context& context, CommandBuffer& res) const override {
auto tensorArrayInput = inputs[1];
auto inDes = TensorUtils::getDescribe(tensorArrayInput);
if (inDes->tensorArrayAttr == nullptr) {
MNN_ASSERT(false);
return false;
}
2021-02-07 10:45:07 +08:00
//MNN_ASSERT(inDes->tensorArrayAttr->isIdenticalShape);
2021-01-06 16:29:37 +08:00
auto output = outputs[0];
auto outputDes = TensorUtils::getDescribe(output);
outputDes->memoryType = Tensor::InsideDescribe::MEMORY_VIRTUAL;
outputDes->regions.resize(1);
auto& reg = outputDes->regions[0];
reg.origin = tensorArrayInput;
reg.src.offset = 0;
reg.src.stride[0] = 1;
reg.src.stride[1] = 1;
reg.src.stride[2] = 1;
reg.dst.offset = 0;
reg.dst.stride[0] = 1;
reg.dst.stride[1] = 1;
reg.dst.stride[2] = 1;
reg.size[0] = tensorArrayInput->elementSize();
reg.size[1] = 1;
reg.size[2] = 1;
return true;
}
};
static void _create() {
std::shared_ptr<GeometryComputer> comp0(new GeometryTensorArray);
GeometryComputer::registerGeometryComputer(comp0, {OpType_TensorArray});
std::shared_ptr<GeometryComputer> comp1(new GeometryTensorArraySize);
GeometryComputer::registerGeometryComputer(comp1, {OpType_TensorArraySize});
std::shared_ptr<GeometryComputer> comp2(new GeometryTensorArrayRead);
GeometryComputer::registerGeometryComputer(comp2, {OpType_TensorArrayRead});
std::shared_ptr<GeometryComputer> comp3(new GeometryTensorArrayWrite);
GeometryComputer::registerGeometryComputer(comp3, {OpType_TensorArrayWrite});
std::shared_ptr<GeometryComputer> comp4(new GeometryTensorArrayGather);
GeometryComputer::registerGeometryComputer(comp4, {OpType_TensorArrayGather});
std::shared_ptr<GeometryComputer> comp5(new GeometryTensorArrayScatter);
GeometryComputer::registerGeometryComputer(comp5, {OpType_TensorArrayScatter});
std::shared_ptr<GeometryComputer> comp6(new GeometryTensorArraySplit);
GeometryComputer::registerGeometryComputer(comp6, {OpType_TensorArraySplit});
std::shared_ptr<GeometryComputer> comp7(new GeometryTensorArrayConcat);
GeometryComputer::registerGeometryComputer(comp7, {OpType_TensorArrayConcat});
}
REGISTER_GEOMETRY(GeometryTensorArray, _create);
} // namespace MNN