MNN/source/backend/cpu/compute/ConvInt8TiledExecutor.cpp

1386 lines
63 KiB
C++
Raw Normal View History

// ConvInt8TiledExecutor.cpp
// MNN
//
// Created by MNN on 2019/5/17.
// Copyright © 2018, Alibaba Group Holding Limited
//
2023-06-16 09:42:45 +08:00
#include "ConvInt8TiledExecutor.hpp"
#include "ConvolutionTiledExecutor.hpp"
#include "core/Macro.h"
2023-06-16 09:42:45 +08:00
#include "core/BufferAllocator.hpp"
#include <math.h>
#include "backend/cpu/CPUBackend.hpp"
#include "core/Concurrency.h"
#include "core/TensorUtils.hpp"
2025-02-12 11:14:19 +08:00
#define QUANT_INFO_BYTES 4
namespace MNN {
2024-08-24 15:46:21 +08:00
ConvInt8TiledExecutor::ConvInt8TiledExecutor(Backend* backend, const Op* op): CPUConvolution(op->main_as_Convolution2D()->common(), backend) {}
ConvInt8TiledExecutor::ConvInt8TiledExecutor(Backend* backend, const Op* op, std::shared_ptr<ResourceInt8> res): CPUConvolution(op->main_as_Convolution2D()->common(), backend), mResourceInt8(res) {
2024-09-12 12:57:57 +08:00
if (!res->mDynamicQuant) {
mMutableResource.reset(new MutableResourceInt8(res, backend));
mValid = mMutableResource->mValid;
}
2021-09-18 15:52:30 +08:00
}
ConvInt8TiledExecutor::~ConvInt8TiledExecutor() {
// Do nothing
}
bool ConvInt8TiledExecutor::onClone(Backend* bn, const Op* op, Execution** dst) {
return false;
}
ErrorCode ConvInt8TiledExecutor::onResize(const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs) {
2024-09-12 12:57:57 +08:00
if (nullptr != mMutableResource) {
mMutableResource->updateInputOutputScale(TensorUtils::getQuantInfo(inputs[0]), TensorUtils::getQuantInfo(outputs[0]));
}
2021-09-18 15:52:30 +08:00
CPUConvolution::onResize(inputs, outputs);
2023-06-16 09:42:45 +08:00
ConvolutionTiledExecutor::setIm2ColParameter(mIm2ColParamter, mCommon, inputs[0], outputs[0], mPadX, mPadY, static_cast<CPUBackend*>(backend())->functions(), static_cast<CPUBackend*>(backend())->int8Functions());
2021-09-18 15:52:30 +08:00
return NO_ERROR;
}
2025-03-12 11:35:16 +08:00
void ConvInt8TiledExecutor::reorderWeight(uint8_t* dst, const uint8_t* src, int32_t* info, int32_t initval, float* kernelsum, weightSummerFuncion summerFunc) {
// weight shape = {blockNum, UP_DIV(oc, UNIT), kernelCount * UP_DIV(ic / blockNum, SRC_UNIT), UNIT, SRC_UNIT};
2025-02-12 11:14:19 +08:00
MNN_ASSERT(dst != nullptr && src != nullptr);
int blockNum = info[0];
int oc = info[1];
int ic = info[2];
int kernelCount = info[3];
int UNIT = info[4];
int SRC_UNIT = info[5];
int blockL = UP_DIV(ic / blockNum, SRC_UNIT) * kernelCount;
int stride0 = ROUND_UP(oc, UNIT) * SRC_UNIT * blockL; // weight->stride(0)
int stride1 = blockL * SRC_UNIT * UNIT; // weight->stride(1)
int stride2 = UNIT * SRC_UNIT; // weight->stride(2)
int weightlen = stride0 * blockNum;
memset(dst, initval, weightlen);
2025-03-12 11:35:16 +08:00
auto hU = UP_DIV(oc, UNIT);
auto lU = UP_DIV(ic / blockNum, SRC_UNIT) * kernelCount;
bool fast = (kernelCount == 1 && ROUND_UP(oc, UNIT) == oc && ROUND_UP(ic, SRC_UNIT) == ic);
if (fast) {
for (int i = 0; i < hU; ++i) {
for (int k = 0; k < UNIT; ++k) {
for (int bl = 0; bl < blockNum; ++bl) {
for (int j = 0; j < lU; ++j) {
int srcindex = (i * UNIT + k) * ic + bl * (lU * SRC_UNIT) + j * SRC_UNIT;
int dstindex = bl * stride0 + i * stride1 + j * stride2 + k * SRC_UNIT;
memcpy(dst + dstindex, src + srcindex, SRC_UNIT);
}
}
}
}
} else {
AutoStorage<uint8_t> tmpBuffer(ic * kernelCount * ROUND_UP(oc, UNIT));
memset(tmpBuffer.get(), 0, tmpBuffer.size());
auto area = ic * kernelCount;
// [oc, ic, k2] -> [hU, ic, k2, hP]
for (int i = 0; i < oc; ++i) {
auto outId = i / UNIT;
auto inId = i % UNIT;
for (int j = 0; j < area; ++j) {
tmpBuffer.get()[outId * area * UNIT + j * UNIT + inId] = src[i * area + j];
}
}
// [hU, ic, (k2, hP)] -> [blocknum, hU, lU, (k2, hP), lP]
AutoStorage<uint8_t> packedBuffer(weightlen);
memset(packedBuffer.get(), 0, weightlen);
area = kernelCount * UNIT;
auto blocksize = ic * kernelCount / blockNum;
for (int i = 0; i < hU; ++i) {
for (int j = 0; j < ic; ++j) {
int bk = j / blocksize;
int blu = (j % blocksize) / SRC_UNIT;
int blp = (j % blocksize) % SRC_UNIT;
for (int k = 0; k < area; ++k) {
int dstindex = bk * stride0 + i * stride1 + blu * kernelCount * stride2 + k * SRC_UNIT + blp;
int srcindex = i * ic * area + j * area + k;
packedBuffer.get()[dstindex] = tmpBuffer.get()[srcindex];
}
2023-06-16 09:42:45 +08:00
}
}
2025-03-12 11:35:16 +08:00
// [(blocknum, hU), lU, k2, (hP, lP)] -> [(blocknum, hU), k2, lU, (hP, lP)]
area = UNIT * SRC_UNIT;
auto bklU = UP_DIV(ic, SRC_UNIT) / blockNum;
for (int bk = 0; bk < blockNum * hU; ++bk) {
for (int i = 0; i < kernelCount; ++i) {
for (int j = 0; j < bklU; ++j) {
memcpy(dst + bk * stride1 + i * bklU * area + j * area, packedBuffer.get() + bk * stride1 + i * area + j * kernelCount * area, area);
}
}
}
} // not fast
if (summerFunc != nullptr && kernelsum != nullptr) {
summerFunc(kernelsum, (int8_t*)dst, blockNum * hU, blockL, UNIT, SRC_UNIT);
2023-06-16 09:42:45 +08:00
}
}
2025-02-12 11:14:19 +08:00
void ConvInt8TiledExecutor::packWeightAndQuantInfo(int8_t* dstbuffer, const int8_t* weight, const int8_t* quantInfo, int32_t* info, int infoBytes) {
int blockNum = info[0];
int ocDiv = info[1];
int blockL = info[2];
int UNIT = info[3];
int SRC_UNIT = info[4];
auto ocUp4 = info[5];
auto src0 = weight; // int8 weight: [blocknum, oc/hp, ic/lp*(kx*ky)/blocknum, hp, lp]
auto src1 = quantInfo; // dequant scale
auto src2 = src1 + infoBytes * ocUp4 * blockNum; // dequant bias
int stride0 = info[1] * info[2] * info[3] * info[4];
int stride1 = info[2] * info[3] * info[4];
for (int bl = 0; bl < blockNum; ++bl) {
auto blockPtr = dstbuffer + bl * (stride0 + ocUp4 * 2 * infoBytes);
for (int hU = 0; hU < ocDiv; ++hU) {
int scaleCount = ALIMIN(ocUp4 - hU * UNIT, UNIT);
auto hUPtr = blockPtr + hU * (stride1 + 2 * UNIT * infoBytes);
memcpy(hUPtr, src0 + bl * stride0 + hU * stride1, stride1);
memcpy(hUPtr + stride1, src1 + (bl * ocUp4 + hU * UNIT) * infoBytes, scaleCount * infoBytes);
memcpy(hUPtr + stride1 + scaleCount * infoBytes, src2 + (bl * ocUp4 + hU * UNIT) * infoBytes, scaleCount * infoBytes);
2024-12-31 15:34:08 +08:00
}
}
}
2025-03-12 11:35:16 +08:00
static void _computeReorderQuantInfo(std::shared_ptr<CPUConvolution::ResourceInt8> resource, std::shared_ptr<ConvolutionCommon::Int8Common> quantCommon, int outputCount, int kernelCount, Backend* backend, AutoStorage<int8_t>& reorderedQuantInfo, float* ikernelSum, int ocUpHp, bool realInt4OrInt8) {
// Only used for dynamic quant:
// copy gemm bias
// copy/compute real dequant bias/scale
// dequant weight kernel sum
2024-08-24 15:46:21 +08:00
auto core = static_cast<CPUBackend*>(backend)->functions();
2024-07-22 19:51:53 +08:00
int ocUp4 = ROUND_UP(outputCount, core->pack);
2024-08-24 15:46:21 +08:00
2025-03-12 11:35:16 +08:00
int blockNum = resource->mBlockNum;
2024-07-22 19:51:53 +08:00
int scaleSize = blockNum * ocUp4; // pack size.
2025-03-12 11:35:16 +08:00
int blockSize = kernelCount / blockNum;
2024-07-22 19:51:53 +08:00
int originOffset = 0;
if (quantCommon->canUseInt4) {
originOffset = -8;
2024-12-31 15:34:08 +08:00
}
// Save weight quant alpha and zero: wf=alpha*wi+zero
2025-02-12 11:14:19 +08:00
auto alphaPtr = reinterpret_cast<float*>(reorderedQuantInfo.get());
auto biasPtr = reinterpret_cast<float*>(reinterpret_cast<uint8_t*>(alphaPtr) + scaleSize * QUANT_INFO_BYTES);
2024-11-18 14:37:45 +08:00
if (outputCount % core->pack != 0) {
2025-02-12 11:14:19 +08:00
::memset(alphaPtr, 0, scaleSize * QUANT_INFO_BYTES);
::memset(biasPtr, 0, scaleSize * QUANT_INFO_BYTES);
2024-11-18 14:37:45 +08:00
}
2024-07-22 19:51:53 +08:00
auto quanInfoPtr = quantCommon->alpha.get();
2025-03-12 11:35:16 +08:00
auto weightKernelSum = resource->mWeightKernelSum->host<float>();
::memset(weightKernelSum, 0, resource->mWeightKernelSum->size());
// ikernelsum: [blocknum, oc]
2024-07-22 19:51:53 +08:00
if (quantCommon->asymmetric) {
2025-03-12 11:35:16 +08:00
for (int i = 0; i < outputCount; ++i) {
float accum = 0.f;
for (int j = 0; j < blockNum; ++j) {
int index = i * blockNum + j;
alphaPtr[j * ocUp4 + i] = quanInfoPtr[2 * index + 1];
biasPtr[j * ocUp4 + i] = quanInfoPtr[2 * index] + (float)originOffset * quanInfoPtr[2 * index + 1];
if (realInt4OrInt8) {
accum += (ikernelSum[j * ocUpHp + i] * quanInfoPtr[2 * index + 1] + blockSize * biasPtr[j * ocUp4 + i]);
} else {
accum += ((ikernelSum[j * ocUpHp + i] - blockSize * 8)* quanInfoPtr[2 * index + 1] + blockSize * quanInfoPtr[2 * index]);
}
2024-07-22 19:51:53 +08:00
}
2025-03-12 11:35:16 +08:00
weightKernelSum[i] = accum;
2024-07-22 19:51:53 +08:00
}
} else {
2025-03-12 11:35:16 +08:00
for (int i = 0; i < outputCount; ++i) {
float accum = 0.f;
for (int j = 0; j < blockNum; ++j) {
int index = i * blockNum + j;
alphaPtr[j * ocUp4 + i] = quanInfoPtr[index];
biasPtr[j * ocUp4 + i] = (float)originOffset * quanInfoPtr[index];
if (realInt4OrInt8) {
accum += (ikernelSum[j * ocUpHp + i] * quanInfoPtr[index] + blockSize * biasPtr[j * ocUp4 + i]);
} else {
accum += ((ikernelSum[j * ocUpHp + i] - blockSize * 8) * quanInfoPtr[index]);
2024-08-24 15:46:21 +08:00
}
2024-07-22 19:51:53 +08:00
}
2025-03-12 11:35:16 +08:00
weightKernelSum[i] = accum;
2024-07-22 19:51:53 +08:00
}
}
2025-03-12 11:35:16 +08:00
2024-07-22 19:51:53 +08:00
}
2024-09-12 12:57:57 +08:00
DenseConvInt8TiledExecutor::DenseConvInt8TiledExecutor(Backend* backend, const Op* op, std::shared_ptr<ConvolutionCommon::Int8Common> quanCommon) : ConvInt8TiledExecutor(backend, op) {
2025-03-12 11:35:16 +08:00
// convolution info
2024-08-24 15:46:21 +08:00
auto convOp = op->main_as_Convolution2D();
2025-03-12 11:35:16 +08:00
int kernelCount = mCommon->kernelX() * mCommon->kernelY();
int oc = convOp->common()->outputCount();
int ic = convOp->common()->inputCount();
int dequantCnt = quanCommon->alphaSize;
if (quanCommon->asymmetric) {
dequantCnt /= 2;
}
int blockNum = dequantCnt / oc;
// backend info
auto core = static_cast<CPUBackend*>(backend)->int8Functions();
2024-07-22 19:51:53 +08:00
auto gcore = static_cast<CPUBackend*>(backend)->functions();
int UNIT, SRC_UNIT, DST_XUNIT;
core->MNNGetGemmUnit(&UNIT, &SRC_UNIT, &DST_XUNIT);
2024-08-24 15:46:21 +08:00
int pack = gcore->pack;
2025-03-12 11:35:16 +08:00
// compute info
int ocUp4 = ROUND_UP(oc, pack);
int lU = UP_DIV(ic / blockNum, SRC_UNIT) * kernelCount;
int scaleSize = ocUp4 * blockNum;
std::vector<int> shape = {blockNum, UP_DIV(oc, UNIT), lU, UNIT, SRC_UNIT};
mResourceInt8.reset(new CPUConvolution::ResourceInt8);
mResourceInt8->mDynamicQuant = true;
mResourceInt8->mWeightAsymmetricQuant = quanCommon->asymmetric;
mResourceInt8->mActBits = 8;
mResourceInt8->mBlockNum = blockNum;
if (quanCommon->canUseInt4) {
shape[4] = SRC_UNIT / 2;
mResourceInt8->mActBits = 4;
mResourceInt8->mWeightAsymmetricQuant = true; // offset: 8 from uint8_t
}
// Relu/Relu6 post parameters
auto postPtr = getPostParameters();
mResourceInt8->mReluThreshold.resize(2);
mResourceInt8->mReluThreshold[0] = postPtr[2];
mResourceInt8->mReluThreshold[1] = postPtr[3];
if (gcore->bytes == 2) {
gcore->MNNFp32ToLowp(mResourceInt8->mReluThreshold.data(), reinterpret_cast<int16_t*>(mResourceInt8->mReluThreshold.data()), 2);
}
// buffer allocate
auto quantlen = 2 * blockNum * ROUND_UP(oc, pack) * QUANT_INFO_BYTES;
auto weightlen = shape[0] * shape[1] * shape[2] * shape[3] * shape[4];
mResourceInt8->mWeightInt8.reset(Tensor::createDevice<uint8_t>({weightlen + quantlen}));
mResourceInt8->mOriginBias.reset(Tensor::createDevice<int32_t>({ocUp4})); // float
mResourceInt8->mWeightKernelSum.reset(Tensor::createDevice<uint8_t>({QUANT_INFO_BYTES * ocUp4}));
auto res = backend->onAcquireBuffer(mResourceInt8->mOriginBias.get(), Backend::STATIC);
res &= backend->onAcquireBuffer(mResourceInt8->mWeightKernelSum.get(), Backend::STATIC);
res &= backend->onAcquireBuffer(mResourceInt8->mWeightInt8.get(), Backend::STATIC);
if (!res) {
MNN_ERROR("weight acquire buffer error\n");
return;
}
2024-12-31 15:34:08 +08:00
bool useCachedMmap = backend->getRuntime()->hint().useCachedMmap > 1;
2025-03-12 11:35:16 +08:00
if (useCachedMmap) {
return;
}
bool directReadInt4weight = (kernelCount == 1 && ROUND_UP(oc, UNIT) == oc && ROUND_UP(ic, SRC_UNIT) == ic);
// Save bias
::memset(mResourceInt8->mOriginBias->host<float>(), 0, ocUp4 * sizeof(float));
if (convOp->bias()) {
::memcpy(mResourceInt8->mOriginBias->host<float>(), convOp->bias()->data(), oc * sizeof(float));
}
2024-10-22 14:37:28 +08:00
#ifdef MNN_KLEIDIAI_ENABLED
if(quanCommon->canUseInt4) {
bool bFP16 = gcore->bytes == 2 ? true : false;
bool bAsym = quanCommon->asymmetric;
size_t blkSize = mResourceInt8->mBlockNum == 1 ? 0 : ic / mResourceInt8->mBlockNum;
KleidiAI::AccelType accelType = KleidiAI::getQIntAccelType(4, bAsym, blkSize);
AutoStorage<int8_t> reorderedQuantInfo;
reorderedQuantInfo.reset(2 * scaleSize * QUANT_INFO_BYTES);
if (reorderedQuantInfo.get() == nullptr) {
MNN_ERROR("Memory not enough\n");
return;
}
//Prepare scale and zero data.
{
int outputCount = convOp->common()->outputCount();
int originOffset = -8;
auto quanInfoPtr = quanCommon->alpha.get();
auto scalePtr = reinterpret_cast<float*>(reorderedQuantInfo.get());
auto zeroPtr = reinterpret_cast<float*>(reinterpret_cast<uint8_t*>(scalePtr) + scaleSize * QUANT_INFO_BYTES);
if (quanCommon->asymmetric) {
for (int i = 0; i < blockNum; ++i) {
auto dstScale = scalePtr + i * ocUp4;
auto dstZero = zeroPtr + i * ocUp4;
for (int j = 0; j < outputCount; ++j) {
int scaleIndex = j * blockNum + i;
dstScale[j] = quanInfoPtr[2 * scaleIndex + 1];
dstZero[j] = quanInfoPtr[2 * scaleIndex] + (float)originOffset * dstScale[j];
}
}
} else {
for (int i = 0; i < blockNum; ++i) {
auto dstScale = scalePtr + i * ocUp4;
auto dstZero = zeroPtr + i * ocUp4;
for (int j = 0; j < outputCount; ++j) {
int scaleIndex = j * blockNum + i;
dstScale[j] = quanInfoPtr[scaleIndex];
dstZero[j] = (float)originOffset * dstScale[j];
}
}
}
}
if (!KleidiAI::mKaiInitialized) {
KleidiAI& kai = KleidiAI::getInstance(*MNNGetCPUInfo(), bFP16, false);
}
KleidiAI& kai = KleidiAI::getInstance();
if(!kai.isLoaded(accelType)) {
kai.setLoaded(accelType);
kai.printInfo(accelType);
2024-10-22 14:37:28 +08:00
}
2024-10-24 14:07:29 +08:00
if(kai.canAccelerate(accelType)) {
mAccelType = accelType;
int n = oc;
int k = ic;
int packedWeightSize = kai.getRhsPackedSize(mAccelType, n, k, blkSize);
2024-10-24 14:07:29 +08:00
//Alloc packed weight tensor.
mResourceInt8->mWeightInt8.reset(Tensor::createDevice<uint8_t>({packedWeightSize}));
bool success = backend->onAcquireBuffer(mResourceInt8->mWeightInt8.get(), Backend::STATIC);
if (!success) {
MNN_ERROR("Out of static memory!\n");
return;
}
size_t paraNum = scaleSize;
float *scalePtr = reinterpret_cast<float*>(reorderedQuantInfo.get());
float *zeroPtr = reinterpret_cast<float*>(reorderedQuantInfo.get()) + paraNum;
float *biasPtr = mResourceInt8->mOriginBias->host<float>();
//Reload some parameters to fit ukernels' layout.
auto quanInfoPtr = quanCommon->alpha.get();
if(bAsym) {
for(int i = 0; i < paraNum; i++) {
zeroPtr[i] = quanInfoPtr[i * 2];
scalePtr[i] = quanInfoPtr[i * 2 + 1];
}
} else {
if(blkSize != 0) {
memcpy(scalePtr, (uint8_t*)quanInfoPtr, paraNum * sizeof(float));
}
}
//Run rhs pack.
auto weightPackedData = mResourceInt8->mWeightInt8->host<uint8_t>();
kai.runRhsPack(mAccelType, 1, n, k, blkSize, 0/*unused*/,
(uint8_t*)quanCommon->weight.get(),
(const void*)scalePtr, (const void*)zeroPtr, (const void*)biasPtr,
weightPackedData, directReadInt4weight);
return;
}
}
2024-10-22 14:37:28 +08:00
#endif
2025-03-12 11:35:16 +08:00
auto target = mResourceInt8;
auto function = [shape, UNIT, SRC_UNIT, quanCommon, weightlen, scaleSize, directReadInt4weight, blockNum, ic, oc, quantlen, kernelCount, backend, convOp, gcore, target]() -> int {
auto sh = shape;
AutoStorage<int8_t> weightReordered(weightlen);
AutoStorage<int8_t> reorderedQuantInfo(2 * scaleSize * QUANT_INFO_BYTES);
if (weightReordered.get() == nullptr || reorderedQuantInfo.get() == nullptr) {
MNN_ERROR("Memory not enough\n");
return -1;
2024-08-24 15:46:21 +08:00
}
2025-03-12 11:35:16 +08:00
/* 1. reorder weight */
if (quanCommon->canUseInt4 && directReadInt4weight) {
auto srcPtr = (uint8_t*)quanCommon->weight.get();
auto dstPtr = (uint8_t*)weightReordered.get();
::memset(dstPtr, 0, weightlen);
AutoStorage<int8_t> kernelsum(blockNum * ROUND_UP(oc, UNIT) * QUANT_INFO_BYTES);
if (kernelsum.get() == nullptr) {
MNN_ERROR("Kernel sum buffer allocated error\n");
return -1;
}
gcore->MNNReorderWeightInt4(dstPtr, srcPtr, sh.data(), sh.size(), (float*)kernelsum.get());
_computeReorderQuantInfo(target, quanCommon, oc, kernelCount * ic, backend, reorderedQuantInfo, (float*)kernelsum.get(), ROUND_UP(oc, UNIT), true);
} else {
// std::shared_ptr<Tensor> srcWeight;
auto weightLength = quanCommon->weight.size();
int blocksize = ic * kernelCount / blockNum;
int originOffset = 0;
int32_t info[6] = {blockNum, oc, ic, kernelCount, UNIT, SRC_UNIT};
if (quanCommon->canUseInt4) {
originOffset = -8;
auto srcPtr = reinterpret_cast<uint8_t*>(quanCommon->weight.get());
std::vector<uint8_t> tmpWeight(weightLength * 2);
for (int j = 0; j < oc; ++j) {
for (int k = 0; k < blockNum; ++k) {
for (int i = 0; i < blocksize; ++i) {
int index = j * blockNum * blocksize + k * blocksize + i;
uint8_t w_ = srcPtr[index / 2];
int truew = index % 2 ? (w_ & 0x0f) : (w_ >> 4);
tmpWeight[index] = truew;
}
2025-01-22 14:47:50 +08:00
}
}
2025-03-12 11:35:16 +08:00
AutoStorage<uint8_t> packedInt8weight(weightlen * 2);
if (packedInt8weight.get() == nullptr) {
MNN_ERROR("Weight reorder memory not enough!\n");
return -1;
}
AutoStorage<int8_t> kernelsum(blockNum * ROUND_UP(oc, UNIT) * QUANT_INFO_BYTES);
if (kernelsum.get() == nullptr) {
MNN_ERROR("Kernel sum buffer allocated error\n");
return -1;
}
reorderWeight(packedInt8weight.get(), (uint8_t*)tmpWeight.data(), info,0, (float*)kernelsum.get(), gcore->MNNSumWeightInt8);
_computeReorderQuantInfo(target, quanCommon, oc, kernelCount * ic, backend, reorderedQuantInfo, (float*)kernelsum.get(), ROUND_UP(oc, UNIT), false);
// pack two int4 to int8
int leng = weightlen * 2;
auto srcint4Ptr = (uint8_t*)packedInt8weight.get();
auto dstint4Ptr = (uint8_t*)weightReordered.get();
int permuteUnit = UNIT * SRC_UNIT;
int halfPermuteStride = static_cast<int32_t>(permuteUnit / 2);
for (int i = 0; i < leng / permuteUnit; ++i) {
auto src0 = srcint4Ptr + i * permuteUnit;
auto dst0 = dstint4Ptr + i * halfPermuteStride;
for (int j = 0; j < halfPermuteStride; ++j) {
int s0 = src0[j];
int s1 = src0[j + halfPermuteStride];
int d = (s0) * 16 + (s1);
dst0[j] = d;
}
}
} else {
AutoStorage<int8_t> kernelsum(blockNum * ROUND_UP(oc, UNIT) * QUANT_INFO_BYTES);
if (kernelsum.get() == nullptr) {
MNN_ERROR("Kernel sum buffer allocated error\n");
return -1;
2024-08-24 15:46:21 +08:00
}
2025-03-12 11:35:16 +08:00
reorderWeight((uint8_t*)weightReordered.get(), (uint8_t*)quanCommon->weight.get(), info, 0, (float*)kernelsum.get(), gcore->MNNSumWeightInt8);
_computeReorderQuantInfo(target, quanCommon, oc, kernelCount * ic, backend, reorderedQuantInfo, (float*)kernelsum.get(), ROUND_UP(oc, UNIT), true);
2024-08-24 15:46:21 +08:00
}
2024-07-22 19:51:53 +08:00
}
2025-03-12 11:35:16 +08:00
/* 2. put weight and quantInfo together */
int32_t params[6] = {shape[0], shape[1], shape[2], shape[3], shape[4], quantlen / (2 * QUANT_INFO_BYTES * blockNum)};
ConvInt8TiledExecutor::packWeightAndQuantInfo(target->mWeightInt8->host<int8_t>(), (int8_t*)weightReordered.get(), reorderedQuantInfo.get(), params, QUANT_INFO_BYTES);
2024-08-24 15:46:21 +08:00
2025-03-12 11:35:16 +08:00
return 0;
};
static_cast<CPUBackend*>(backend)->enqueueTask(std::move(function));
2024-09-12 12:57:57 +08:00
}
DenseConvInt8TiledExecutor::DenseConvInt8TiledExecutor(Backend* backend, const Op* op, std::shared_ptr<ResourceInt8> res) : ConvInt8TiledExecutor(backend, op, res) {
2025-02-12 11:14:19 +08:00
// offline quant
2024-08-24 15:46:21 +08:00
auto convOp = op->main_as_Convolution2D();
2025-02-12 11:14:19 +08:00
auto core = static_cast<CPUBackend*>(backend)->int8Functions();
auto gcore = static_cast<CPUBackend*>(backend)->functions();
int pack = gcore->pack;
int ic = convOp->common()->inputCount();
int oc = convOp->common()->outputCount();
int kernelCount = convOp->common()->kernelX() * convOp->common()->kernelY();
int UNIT, SRC_UNIT, DST_XUNIT;
core->MNNGetGemmUnit(&UNIT, &SRC_UNIT, &DST_XUNIT);
int lU = UP_DIV(ic, SRC_UNIT) * kernelCount;
std::vector<int> shape = {1, UP_DIV(oc, UNIT), lU, UNIT, SRC_UNIT};
int weightlen = shape[0] * shape[1] * shape[2] * shape[3] * shape[4];
auto quantlen = mResourceInt8->mOriginScale->size();
2024-08-24 15:46:21 +08:00
mGemmKernel = core->Int8GemmKernel;
#ifdef MNN_USE_SSE
int actBits = convOp->symmetricQuan()->nbits();
if (actBits <= 7) {
mGemmKernel = core->Int8GemmKernelFast;
2024-07-22 19:51:53 +08:00
}
2024-08-24 15:46:21 +08:00
#else
if(convOp->symmetricQuan()->method() == QuantizeAlgo_OVERFLOW_AWARE){
mGemmKernel = core->Int8GemmKernelFast;
}
#endif
2025-03-12 11:35:16 +08:00
auto resourceInt8 = mResourceInt8;
int LSize = convOp->common()->inputCount() * convOp->common()->kernelX() * convOp->common()->kernelY();
int ocUp4 = ROUND_UP(oc, gcore->pack);
int bytes = gcore->bytes;
std::shared_ptr<uint8_t> tmpWeightStorage(new uint8_t[mResourceInt8->mWeightInt8->size()], [](void* ptr) {
delete [] (uint8_t*)ptr;
});
::memcpy(tmpWeightStorage.get(), mResourceInt8->mWeightInt8->host<uint8_t>(), mResourceInt8->mWeightInt8->size());
mResourceInt8->mWeightInt8.reset(Tensor::createDevice<uint8_t>({weightlen + quantlen}));
auto allocSuc = backend->onAcquireBuffer(mResourceInt8->mWeightInt8.get(), Backend::STATIC);
if (!allocSuc) {
MNN_ERROR("Buffer alloc error!\n");
return;
}
auto reorderFunction = [tmpWeightStorage, weightlen, oc, ic, kernelCount, UNIT, SRC_UNIT, shape, resourceInt8, bytes, LSize, ocUp4, quantlen]()
{
AutoStorage<uint8_t> weightReordered(weightlen);
if (!weightReordered.get()) {
MNN_ERROR("Memory not enough for quant model weight reorder\n");
return -1;
}
int32_t info[6] = {1, oc, ic, kernelCount, UNIT, SRC_UNIT};
ConvInt8TiledExecutor::reorderWeight((uint8_t*)weightReordered.get(), tmpWeightStorage.get(), info, 0);
auto alphaPtr = resourceInt8->mOriginScale->host<float>();
auto biasPtr = reinterpret_cast<float*>(reinterpret_cast<uint8_t*>(alphaPtr) + ocUp4 * bytes);
// Load quant scale and bias
auto wZero = resourceInt8->mWeightQuantZero->host<int32_t>(); // has packed to outputUp4
auto wScale = resourceInt8->mOriginScale->host<float>();
int h = ocUp4;
MNN_ASSERT(4 == bytes);
for (int i=0; i< h; ++i) {
biasPtr[i] = (-1.f) * wZero[i] * wScale[i];
}
int32_t params[6] = {shape[0], shape[1], shape[2], shape[3], shape[4], quantlen/ (2 * QUANT_INFO_BYTES * 1)};
ConvInt8TiledExecutor::packWeightAndQuantInfo(resourceInt8->mWeightInt8->host<int8_t>(), (int8_t*)weightReordered.get(), resourceInt8->mOriginScale->host<int8_t>(), params, QUANT_INFO_BYTES);
return 0;
};
static_cast<CPUBackend*>(backend)->enqueueTask(reorderFunction);
2024-07-22 19:51:53 +08:00
}
2021-09-18 15:52:30 +08:00
2024-08-24 15:46:21 +08:00
DenseConvInt8TiledExecutor::DenseConvInt8TiledExecutor(Backend* backend, const Op* op, const DenseConvInt8TiledExecutor& exe)
2024-09-12 12:57:57 +08:00
: ConvInt8TiledExecutor(backend, op, exe.mResourceInt8), mGemmKernel(exe.mGemmKernel) {
}
2021-09-18 15:52:30 +08:00
DenseConvInt8TiledExecutor::~DenseConvInt8TiledExecutor() {
// Do nothing
}
2021-09-18 15:52:30 +08:00
bool DenseConvInt8TiledExecutor::onClone(Backend* bn, const Op* op, Execution** dst) {
if (nullptr == dst) {
return true;
}
2024-08-24 15:46:21 +08:00
auto exe = new DenseConvInt8TiledExecutor(bn, op, *this);
if (!exe->valid()) {
return false;
}
#ifdef MNN_KLEIDIAI_ENABLED
exe->mAccelType = this->mAccelType;
#endif
*dst = exe;
return true;
}
2021-09-18 15:52:30 +08:00
void DenseConvInt8TiledExecutor::getPackParameter(int* Unit, int* srcUnit, int* DestUnit, const CoreInt8Functions* core) {
core->MNNGetGemmUnit(Unit, srcUnit, DestUnit);
}
2021-09-18 15:52:30 +08:00
ErrorCode DenseConvInt8TiledExecutor::onResize(const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs) {
2025-01-22 14:47:50 +08:00
// default option
mUseBatchQuan = false;
mQuantFirst = true;
auto option = static_cast<CPUBackend*>(backend())->getRuntime()->hint().dynamicQuantOption;
int batch = inputs[0]->batch();
int inC = inputs[0]->channel();
auto output = outputs[0];
int inputPlane = batch * inputs[0]->width() * inputs[0]->height();
auto planeSize = output->width() * output->height() * output->batch();
2021-09-18 15:52:30 +08:00
auto core = static_cast<CPUBackend*>(backend())->int8Functions();
2024-07-22 19:51:53 +08:00
auto gcore =static_cast<CPUBackend*>(backend())->functions();
2021-09-18 15:52:30 +08:00
int UNIT, SRC_UNIT, DST_XUNIT;
2024-07-22 19:51:53 +08:00
core->MNNGetGemmUnit(&UNIT, &SRC_UNIT, &DST_XUNIT);
2025-01-22 14:47:50 +08:00
int kernelCount = mCommon->kernelY() * mCommon->kernelX();
bool fastway = (kernelCount == 1) && (output->width() == inputs[0]->width()) && (output->height() == inputs[0]->height()) && (mCommon->strideX() * mCommon->strideY()) == 1;
if (inputPlane > 1) {
mUseBatchQuan = true;
}
if (!fastway) { // general conv
mQuantFirst = false;
if (planeSize > 1) {
mUseBatchQuan = true;
}
if (option == 1) { // lowest level.
mQuantFirst = true;
mUseBatchQuan = false;
}
}
2024-12-02 10:12:08 +08:00
float weightBytes = mResourceInt8->mActBits == 4 ? 0.5 : 1;
2025-02-12 11:14:19 +08:00
mBlockNum = mResourceInt8->mBlockNum;
2024-12-02 10:12:08 +08:00
2024-10-22 14:37:28 +08:00
#ifdef MNN_KLEIDIAI_ENABLED
KleidiAI& kai = KleidiAI::getInstance();
if(mResourceInt8->mDynamicQuant && mResourceInt8->mActBits == 4 && kai.canAccelerate(mAccelType)) {
MNN_ASSERT(kai.isLoaded(mAccelType));
const size_t m = inputs[0]->batch(); //lhs vector number.
const size_t n = outputs[0]->channel(); //rhs vector number.
const size_t k = inputs[0]->channel(); //vector size.
const size_t blkSize = mBlockNum == 1 ? 0 : k / mBlockNum;
int packedSize = kai.getLhsQuantedPackedSize(mAccelType, m, k, blkSize);
int elementSize = kai.isHalf() ? sizeof(__fp16) : sizeof(float);
if(m > 1 && !kai.isLinear()) {
int srcSize = m * k * elementSize;
int dstSize = m * n * elementSize;
int extraSize = srcSize > dstSize ? srcSize : dstSize;
packedSize += extraSize;
}
2024-10-22 14:37:28 +08:00
//Split mTempIm2ColBuffer as two parts for linear/tile transfer:
//Part0: Lhs_packed.
//Part1: Lhs/Dst before transfer.
2024-10-22 14:37:28 +08:00
mTempIm2ColBuffer.reset(Tensor::createDevice<int8_t>({packedSize}));
bool success = backend()->onAcquireBuffer(mTempIm2ColBuffer.get(), Backend::DYNAMIC);
if (!success) {
MNN_ERROR("Out of dynamic memory!\n");
return OUT_OF_MEMORY;
}
backend()->onReleaseBuffer(mTempIm2ColBuffer.get(), Backend::DYNAMIC);
return NO_ERROR;
}
#endif
2025-02-12 11:14:19 +08:00
bool useExtraScale = true;
2024-09-12 12:57:57 +08:00
if (mResourceInt8->mDynamicQuant == false) {
2024-08-24 15:46:21 +08:00
mMutableResource->updateInputOutputScale(TensorUtils::getQuantInfo(inputs[0]), TensorUtils::getQuantInfo(outputs[0]));
2025-02-12 11:14:19 +08:00
if (mMutableResource->mResource->mUseConvQuan) {
useExtraScale = false;
}
2024-07-22 19:51:53 +08:00
CPUConvolution::onResize(inputs, outputs);
ConvolutionTiledExecutor::setIm2ColParameter(mIm2ColParamter, mCommon, inputs[0], outputs[0], mPadX, mPadY, gcore, core);
mBlockNum = 1;
2025-01-22 14:47:50 +08:00
mQuantFirst = true;
mUseBatchQuan = false;
2024-07-22 19:51:53 +08:00
} else { // Dynamic Quant kernels
CPUConvolution::onResize(inputs, outputs);
// Gemm Kernel
mGemmKernel = core->Int8GemmKernel;
2024-08-24 15:46:21 +08:00
if (mResourceInt8->mActBits == 4) {
2024-07-22 19:51:53 +08:00
mGemmKernel = core->Int8GemmKernel_W4;
}
mQuantFunc = core->MNNFloat2Int8;
if (gcore->bytes == 2 && gcore->pack == 8) {
mGemmKernel = core->MNNGemmInt8AddBiasScale_Unit_FP16;
2024-08-24 15:46:21 +08:00
if (mResourceInt8->mActBits == 4) {
2024-07-22 19:51:53 +08:00
mGemmKernel = core->MNNGemmInt8AddBiasScale_w4_Unit_FP16;
}
mQuantFunc = core->DynamicQuanInput_ARM82;
mQuantAndReorderFunc = core->DynamicQuanInputAndReorder_ARM82;
2024-08-24 15:46:21 +08:00
2024-07-22 19:51:53 +08:00
}
// A axisSum kernel
mSumByAxisLFunc = gcore->MNNSumByAxisLForMatmul_A;
2024-11-18 14:37:45 +08:00
ConvolutionTiledExecutor::setIm2ColParameter(mIm2ColParamter, mCommon, inputs[0], outputs[0], mPadX, mPadY, gcore, core);
2024-07-22 19:51:53 +08:00
int ocUp4 = ROUND_UP(outputs[0]->channel(), gcore->pack);
}
2024-08-24 15:46:21 +08:00
2024-07-22 19:51:53 +08:00
// input scale buffer
2025-01-22 14:47:50 +08:00
const int threads = static_cast<CPUBackend*>(backend())->threadNumber();
2024-07-22 19:51:53 +08:00
// Im2col info
2025-01-22 14:47:50 +08:00
int im2colBytes = 1;
2023-06-16 09:42:45 +08:00
const int L2Size = 2048;
2025-01-22 14:47:50 +08:00
int tileLimitByC = UP_DIV(L2Size, mIm2ColParamter.kernelCountUnit * SRC_UNIT);
if (mQuantFirst == false) {
im2colBytes = gcore->bytes;
tileLimitByC = 1;
}
int ic = inputs[0]->channel();
2024-07-22 19:51:53 +08:00
int tileLimit = 0;
int outC = output->channel();
int outC4 = UP_DIV(outC, gcore->pack);
2024-12-02 10:12:08 +08:00
auto icDiv4KernelCount = mIm2ColParamter.kernelCountUnit;
mSplitByOc = true;
// flop and io
float flop = gcore->bytes * planeSize * (ROUND_UP(output->channel(), gcore->pack) * icDiv4KernelCount * SRC_UNIT / 1024.0 / 1024.0 / 1024.0);
float ios = (((CPUBackend*)backend())->getTensorSize(outputs[0], true) + ((CPUBackend*)backend())->getTensorSize(inputs[0], true) + ((CPUBackend*)backend())->getTensorSize(mResourceInt8->mWeightInt8.get()) * weightBytes) / (1024.0 * 1024.0 * 1024.0);
2024-07-22 19:51:53 +08:00
if (threads < planeSize) { // Thread split by output nhw.
tileLimit = ALIMIN(tileLimitByC, UP_DIV(planeSize, threads));
2024-12-02 10:12:08 +08:00
mIm2ColCount = UP_DIV(tileLimit, DST_XUNIT);
auto DynamicDestUnit = DST_XUNIT * mIm2ColCount;
mTileCount = UP_DIV(planeSize, DynamicDestUnit);
if (mTileCount > threads) {
mSplitByOc = false;
}
}
if (mSplitByOc) {
2024-07-22 19:51:53 +08:00
tileLimit = ALIMIN(tileLimitByC, planeSize);
2024-12-02 10:12:08 +08:00
mIm2ColCount = UP_DIV(tileLimit, DST_XUNIT);
auto DynamicDestUnit = DST_XUNIT * mIm2ColCount;
mTileCount = UP_DIV(planeSize, DynamicDestUnit);
2024-07-22 19:51:53 +08:00
auto ocPerThread = UP_DIV(outC4, threads);
auto threadNeed = UP_DIV(outC4, ocPerThread);
2024-08-24 15:46:21 +08:00
int totalWork = outC4;
int part = 1;
2024-07-22 19:51:53 +08:00
if (UNIT > gcore->pack) { // AVX512:UNIT=64,pack=16
MNN_ASSERT(UNIT % gcore->pack == 0);
int ocDivUnit = UP_DIV(outC4 * gcore->pack, UNIT);
ocPerThread = UP_DIV(ocDivUnit, threads);
threadNeed = UP_DIV(ocDivUnit, ocPerThread);
2024-08-24 15:46:21 +08:00
totalWork = ocDivUnit;
part = UNIT / gcore->pack;
2024-07-22 19:51:53 +08:00
}
mThreadNums = ALIMIN(threads, threadNeed);
mDivides.resize(threads+1);
mDivides[0] = 0;
2024-12-02 10:12:08 +08:00
static_cast<CPUBackend *>(backend())->computeDivideSizes(totalWork, mDivides.data() + 1, flop / ios);
2024-08-24 15:46:21 +08:00
for (int i = 0; i < mDivides.size(); ++i) {
mDivides[i] *= part;
}
2024-07-22 19:51:53 +08:00
}
2024-08-24 15:46:21 +08:00
2024-12-02 10:12:08 +08:00
if (!mSplitByOc) {
2024-07-22 19:51:53 +08:00
mThreadNums = ALIMIN(threads, mTileCount);
mDivides.resize(threads+1);
mDivides[0] = 0;
2024-12-02 10:12:08 +08:00
static_cast<CPUBackend *>(backend())->computeDivideSizes(mTileCount, mDivides.data() + 1, flop / ios);
}
2024-07-22 19:51:53 +08:00
int ocUp4 = ROUND_UP(outC, gcore->pack);
2024-12-02 10:12:08 +08:00
int k = mThreadNums;
int workPT = DST_XUNIT * mIm2ColCount;
if (mSplitByOc) {
k = 1; // Use one thread to finish im2col.
workPT = mTileCount * DST_XUNIT * mIm2ColCount;
}
2024-07-22 19:51:53 +08:00
2023-06-16 09:42:45 +08:00
auto bufferAlloc = static_cast<CPUBackend*>(backend())->getBufferAllocator();
2024-12-02 10:12:08 +08:00
auto blitInfoSize = ConvolutionTiledExecutor::computeBlitInfoSize(workPT, mIm2ColParamter.ow, mIm2ColParamter.kernelX * mIm2ColParamter.kernelY, k);
2024-07-22 19:51:53 +08:00
mBlitInfoStride = blitInfoSize.second;
2023-06-16 09:42:45 +08:00
mBlitInfo = bufferAlloc->alloc(blitInfoSize.first);
2025-01-22 14:47:50 +08:00
int im2colBuffSize = DST_XUNIT * mIm2ColCount * icDiv4KernelCount * SRC_UNIT;
2024-12-02 10:12:08 +08:00
if (!mSplitByOc) {
2025-01-22 14:47:50 +08:00
mTempIm2ColBuffer.reset(Tensor::createDevice<int8_t>({threads, im2colBuffSize * im2colBytes}));
2024-12-02 10:12:08 +08:00
mTempSrcSum.resize(threads * mBlockNum * DST_XUNIT * mIm2ColCount * 4); // Use 4 bytes to save kernel sum.
} else {
2025-01-22 14:47:50 +08:00
mTempIm2ColBuffer.reset(Tensor::createDevice<int8_t>({mTileCount, im2colBuffSize * im2colBytes}));
2024-12-02 10:12:08 +08:00
mTempSrcSum.resize(mTileCount * mBlockNum * DST_XUNIT * mIm2ColCount * 4); // Use 4 bytes to save kernel sum.
}
2025-02-12 11:14:19 +08:00
auto success = backend()->onAcquireBuffer(mTempIm2ColBuffer.get(), Backend::DYNAMIC);
if (useExtraScale) {
// dequant_scale: area * sizeof(float)
// quant_scale: area * sizeof(float)
// absmax: [threads, area*core->bytes)]
int size = DST_XUNIT * mIm2ColCount * QUANT_INFO_BYTES;
if (mUseBatchQuan) {
if (mQuantFirst == false) {
size = 2 * mIm2ColCount * DST_XUNIT * QUANT_INFO_BYTES + mIm2ColCount * DST_XUNIT * gcore->bytes;
} else {
size = 2 * inputPlane * QUANT_INFO_BYTES + inputPlane * gcore->bytes;
}
}
mBatchQuantInfo.reset(Tensor::createDevice<int8_t>({threads, size}));
success &= backend()->onAcquireBuffer(mBatchQuantInfo.get(), Backend::DYNAMIC);
}
2024-07-22 19:51:53 +08:00
2025-02-12 11:14:19 +08:00
2024-07-22 19:51:53 +08:00
if (!success || mBlitInfo.invalid()) {
2023-06-16 09:42:45 +08:00
return OUT_OF_MEMORY;
}
2024-09-12 12:57:57 +08:00
if (false == mResourceInt8->mDynamicQuant) {
2024-07-22 19:51:53 +08:00
bufferAlloc->free(mBlitInfo);
backend()->onReleaseBuffer(mTempIm2ColBuffer.get(), Backend::DYNAMIC);
2025-02-12 11:14:19 +08:00
if (useExtraScale) {
backend()->onReleaseBuffer(mBatchQuantInfo.get(), Backend::DYNAMIC);
}
2024-07-22 19:51:53 +08:00
return NO_ERROR;
}
2023-06-16 09:42:45 +08:00
2024-07-22 19:51:53 +08:00
// set im2col tensor info
2025-01-22 14:47:50 +08:00
if (mQuantFirst) {
mQuantInput.reset((Tensor::createDevice<int8_t>({batch, mIm2ColParamter.ih, mIm2ColParamter.iw, ROUND_UP(inC, gcore->pack)})));
} else if (!mSplitByOc){
mQuantInput.reset((Tensor::createDevice<int8_t>({threads, im2colBuffSize * 1})));
// mIm2ColParamter.ic = inC;
} else {
mQuantInput.reset((Tensor::createDevice<int8_t>({mTileCount, im2colBuffSize * 1})));
}
success &= backend()->onAcquireBuffer(mQuantInput.get(), Backend::DYNAMIC);
2024-07-22 19:51:53 +08:00
// set dynamic quant buffer
2025-01-22 14:47:50 +08:00
2024-07-22 19:51:53 +08:00
// set compute buffer
2025-01-22 14:47:50 +08:00
if (!mUseBatchQuan) {
mTempMaxMinValueBuffer.reset(Tensor::createDevice<uint8_t>({threads, 2 * gcore->bytes}));
if (mQuantFirst) {
mDynamicBias.reset(Tensor::createDevice<uint8_t>({ocUp4 * 4}));
} else {
mDynamicBias.reset(Tensor::createDevice<uint8_t>({threads, ocUp4 * 4}));
}
success &= backend()->onAcquireBuffer(mDynamicBias.get(), Backend::DYNAMIC);
success &= backend()->onAcquireBuffer(mTempMaxMinValueBuffer.get(), Backend::DYNAMIC);
}
2025-02-12 11:14:19 +08:00
mAccumBuffer.reset(Tensor::createDevice<int32_t>({threads, DST_XUNIT * ocUp4}));
success &= backend()->onAcquireBuffer(mAccumBuffer.get(), Backend::DYNAMIC);
2024-08-24 15:46:21 +08:00
2024-07-22 19:51:53 +08:00
if (!success) {
return OUT_OF_MEMORY;
}
bufferAlloc->free(mBlitInfo);
backend()->onReleaseBuffer(mTempIm2ColBuffer.get(), Backend::DYNAMIC);
2025-02-12 11:14:19 +08:00
backend()->onReleaseBuffer(mBatchQuantInfo.get(), Backend::DYNAMIC);
2024-07-22 19:51:53 +08:00
backend()->onReleaseBuffer(mQuantInput.get(), Backend::DYNAMIC);
2025-01-22 14:47:50 +08:00
if (mUseBatchQuan == false) {
backend()->onReleaseBuffer(mDynamicBias.get(), Backend::DYNAMIC);
backend()->onReleaseBuffer(mTempMaxMinValueBuffer.get(), Backend::DYNAMIC);
}
2025-02-12 11:14:19 +08:00
backend()->onReleaseBuffer(mAccumBuffer.get(), Backend::DYNAMIC);
return NO_ERROR;
}
2021-09-18 15:52:30 +08:00
ErrorCode DenseConvInt8TiledExecutor::onExecute(const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs) {
const auto input = inputs[0];
auto output = outputs[0];
auto core = static_cast<CPUBackend*>(backend())->int8Functions();
2024-07-22 19:51:53 +08:00
auto gcore = static_cast<CPUBackend*>(backend())->functions();
2021-09-18 15:52:30 +08:00
2024-10-21 14:32:47 +08:00
#ifdef MNN_KLEIDIAI_ENABLED
KleidiAI& kai = KleidiAI::getInstance();
if(mResourceInt8->mDynamicQuant && mResourceInt8->mActBits == 4 && kai.canAccelerate(mAccelType)) {
MNN_ASSERT(kai.isLoaded(mAccelType));
2024-10-22 14:37:28 +08:00
const size_t m = input->batch(); //lhs vector number.
const size_t n = output->channel(); //rhs vector number.
const size_t k = input->channel(); //vector size.
const size_t blkSize = mBlockNum == 1 ? 0 : k / mBlockNum;
bool bHalf = kai.isHalf();
size_t elementSize = bHalf ? sizeof(__fp16) : sizeof(float);
size_t lhsPackedSize = kai.getLhsQuantedPackedSize(mAccelType, m, k, blkSize);
2024-10-22 14:37:28 +08:00
auto lhs = input->host<uint8_t>();
auto lhsPacked = mTempIm2ColBuffer->host<int8_t>();
auto rhsPacked = mResourceInt8->mWeightInt8->host<uint8_t>();
auto dst = output->host<uint8_t>();
2024-10-21 14:32:47 +08:00
uint8_t *linearLhs, *linearDst;
if(m > 1 && !kai.isLinear()) {
linearLhs = (uint8_t *)lhsPacked + lhsPackedSize;
linearDst = linearLhs;
} else {
linearLhs = lhs;
linearDst = dst;
}
2024-10-22 14:37:28 +08:00
int threadNum = static_cast<CPUBackend*>(backend())->threadNumber();
int threadNeed, vecPerThread;
2024-10-22 14:37:28 +08:00
//Dynamic quant pack lhs.
if(m == 1) {
kai.runLhsQuantPack(mAccelType, 1, k, blkSize, 1, linearLhs, lhsPacked);
2024-10-22 14:37:28 +08:00
} else {
if(!kai.isLinear()) {
if(bHalf) {
KleidiAIUtil::transferNC4HW4ToNCHW((__fp16 *)lhs, (__fp16 *)linearLhs, m, k);
} else {
KleidiAIUtil::transferNC4HW4ToNCHW((float *)lhs, (float *)linearLhs, m, k);
}
}
vecPerThread = kai.getVecNumPerThread(m, threadNum, kai.getMr(mAccelType, m));
2024-10-22 14:37:28 +08:00
threadNeed = m % vecPerThread == 0 ? m / vecPerThread : (m / vecPerThread + 1);
size_t srcStride = vecPerThread * k * elementSize;
2024-10-22 14:37:28 +08:00
auto BatchDynamicQuant = [=, &kai](int tId) {
auto threadSrc = linearLhs + tId * srcStride;
auto threadDst = lhsPacked + kai.getLhsQuantedPackedOffset(mAccelType, m, tId * vecPerThread, k, blkSize);
2024-10-22 14:37:28 +08:00
int vecNum = (tId == threadNeed - 1) ? (m - vecPerThread * tId) : vecPerThread; //Last threadN may less than vecPerThread.
kai.runLhsQuantPack(mAccelType, vecNum, k, blkSize, kai.getMr(mAccelType, m), threadSrc, threadDst);
};
MNN_CONCURRENCY_BEGIN(tId, threadNeed) {
2024-10-22 14:37:28 +08:00
BatchDynamicQuant((int)tId);
}
MNN_CONCURRENCY_END();
2024-10-22 14:37:28 +08:00
}
//Run matmul.
2025-04-25 08:27:01 +08:00
if(kai.bSupportSme2() && mAccelType == KleidiAI::AccelType::QI4_SYM_CHNLQT) {
//SME prefer running on single thread to obtain better performance/power consumption ratio.
threadNum = 1;
}
vecPerThread = kai.getVecNumPerThread(n, threadNum, kai.getNStep(mAccelType));
2024-10-22 14:37:28 +08:00
threadNeed = n % vecPerThread == 0 ? n / vecPerThread : (n / vecPerThread + 1);
auto ThreadFunction = [=, &kai](int tId) {
auto threadRhsPacked = rhsPacked + kai.getRhsPackedOffset(mAccelType, tId * vecPerThread, k, blkSize);
auto threadDst = linearDst + kai.getDstOffset(0, tId * vecPerThread, n, elementSize);
2024-10-22 14:37:28 +08:00
int vecNum = (tId == threadNeed - 1) ? (n - vecPerThread * tId) : vecPerThread; //Last threadN may less than vecPerThread.
float scalarMax = bHalf ? FLT16_MAX : FLT_MAX;
kai.runMatmul(mAccelType, m, vecNum, k, blkSize, lhsPacked, threadRhsPacked, threadDst, n * elementSize, elementSize, scalarMax, -scalarMax);
2024-10-22 14:37:28 +08:00
};
MNN_CONCURRENCY_BEGIN(tId, threadNeed) {
ThreadFunction((int)tId);
}
MNN_CONCURRENCY_END();
if(m > 1 && !kai.isLinear()) {
if(bHalf) {
KleidiAIUtil::transferNCHWToNC4HW4((__fp16 *)linearDst, (__fp16 *)dst, m, n);
} else {
KleidiAIUtil::transferNCHWToNC4HW4((float *)linearDst, (float *)dst, m, n);
}
}
2024-10-22 14:37:28 +08:00
return NO_ERROR;
}
#endif
2023-06-16 09:42:45 +08:00
int UNIT__, SRC_UNIT, DST_XUNIT;
core->MNNGetGemmUnit(&UNIT__, &SRC_UNIT, &DST_XUNIT);
auto blitProc = core->MNNPackC4Int8ForMatMul_A;
2024-07-22 19:51:53 +08:00
const int plane = output->batch() * mIm2ColParamter.oh * mIm2ColParamter.ow;
const int batch = input->batch();
const int PackUnit = gcore->pack;
const int dstZStep = plane * PackUnit;
const int ocDiv4 = UP_DIV(output->channel(), PackUnit);
const int ocUp4 = ROUND_UP(output->channel(), PackUnit);
const auto kernelCountUnitDouble = mIm2ColParamter.kernelCountUnit;
2024-07-22 19:51:53 +08:00
const auto col_buffer_unit_size = kernelCountUnitDouble * DST_XUNIT * SRC_UNIT * sizeof(int8_t);
const auto col_buffer_size = col_buffer_unit_size * mIm2ColCount;
const int dstBytes = static_cast<CPUBackend*>(backend())->getBytes(backend(), output);
const int blockL = kernelCountUnitDouble / mBlockNum; // source depthQuad for each block.
float weightBytes = 1.f;
int weight_step_Y = weightBytes * (UNIT__ * SRC_UNIT);
int src_step_Y = DST_XUNIT * SRC_UNIT;
2025-02-12 11:14:19 +08:00
int inputPlane = batch * input->width() * input->height();
2024-07-22 19:51:53 +08:00
auto im2colPtr = mTempIm2ColBuffer->host<int8_t>();
2024-10-14 19:26:28 +08:00
if (SRC_UNIT > PackUnit) {
memset(im2colPtr, 0, mTempIm2ColBuffer->size());
}
2024-07-22 19:51:53 +08:00
const auto weightDataPtr = mResourceInt8->mWeightInt8->host<int8_t>();
auto srcKernelSumPtr = mTempSrcSum.data();
auto outputDataPtr = output->host<int8_t>();
2024-09-12 12:57:57 +08:00
uint8_t* biasPtr = nullptr;
int32_t inputZeroPoint = 0;
if (nullptr != mMutableResource.get()) {
biasPtr = mMutableResource->mBiasFloat->host<uint8_t>();
inputZeroPoint = mMutableResource->mInputZeroPoint;
2025-02-12 11:14:19 +08:00
if (mBatchQuantInfo.get()) {
float scalein = TensorUtils::getQuantInfo(inputs[0])[0];
float scaleou = TensorUtils::getQuantInfo(outputs[0])[0];
for (int i = 0; i < DST_XUNIT * mIm2ColCount; ++i) {
mBatchQuantInfo->host<float>()[i] = scalein / scaleou;
}
}
2024-09-12 12:57:57 +08:00
}
2024-07-22 19:51:53 +08:00
2025-02-12 11:14:19 +08:00
auto SingleDynamicQuant = [&] (uint8_t* floatPtr, int32_t& inputZero, uint8_t* inputDequantScale, uint8_t* matmulBiasPtr, int inputsize, int threads, uint8_t* maxMinValPtr, int8_t* int8ptr) {
2024-07-22 19:51:53 +08:00
float quantscale = 0.f;
float dequantscale = 0.f;
2024-09-12 12:57:57 +08:00
float zeropoint = 0;
2024-07-22 19:51:53 +08:00
/* Count max and min value to compute input scale and zeropoint */
2025-01-22 14:47:50 +08:00
auto findMaxMinValueFunction = [&]() {
auto perThreadWorkCount = inputsize;
auto minValPtrTid = reinterpret_cast<float*>(maxMinValPtr);
auto maxValPtrTid = reinterpret_cast<float*>(maxMinValPtr + gcore->bytes);
auto inputDataPtrTid = reinterpret_cast<float*>(floatPtr);
gcore->MNNCountMaxMinValue(inputDataPtrTid, minValPtrTid, maxValPtrTid, inputsize);
2024-07-22 19:51:53 +08:00
};
2025-01-22 14:47:50 +08:00
findMaxMinValueFunction();
2024-07-22 19:51:53 +08:00
float maxVal = 0;
float minVal = 0;
if (gcore->bytes == 4) {
maxVal = (reinterpret_cast<float*>(maxMinValPtr))[1];
minVal = (reinterpret_cast<float*>(maxMinValPtr))[0];
}
if (gcore->bytes == 2) {
std::vector<float> _mVal(2);
gcore->MNNLowpToFp32(reinterpret_cast<int16_t*>(maxMinValPtr), _mVal.data(), 2);
maxVal = _mVal[1];
minVal = _mVal[0];
}
2024-07-22 19:51:53 +08:00
/* Dynamic quant */
2025-01-22 14:47:50 +08:00
if (mIm2ColParamter.padX > 0 || mIm2ColParamter.padY > 0) { // Ensure "0.0f" included in range.
2024-11-18 14:37:45 +08:00
if (minVal > 0.f) {
minVal = 0.f;
} else if (maxVal < 0.f){
maxVal = 0.f;
} else {
//
}
}
2024-07-22 19:51:53 +08:00
float range = maxVal - minVal;
if (fabs(range) < 1e-7) {
2025-01-22 14:47:50 +08:00
zeropoint = (-1 * maxVal)-128;
quantscale = 1.0f;
dequantscale = 1.0f;
} else {
quantscale = 255.0f / range;
dequantscale = range / 255.0f;
zeropoint = roundf(-minVal * 255.f / range) - 128.0f;
}
2024-07-22 19:51:53 +08:00
auto sizeDiv = UP_DIV(inputsize, PackUnit);
2025-01-22 14:47:50 +08:00
mQuantFunc((float*)floatPtr , int8ptr, sizeDiv, &quantscale, -128, 127, &zeropoint, 0);
2021-09-18 15:52:30 +08:00
2024-07-22 19:51:53 +08:00
/* bias float */
int offset = 0;
2025-02-12 11:14:19 +08:00
auto scale_ = (float*)inputDequantScale;
auto unitsize = mBatchQuantInfo->length(1) / QUANT_INFO_BYTES;
for (int i = 0; i < unitsize; ++i) {
scale_[i] = dequantscale;
}
2024-09-12 12:57:57 +08:00
auto biasfp32 = mResourceInt8->mOriginBias->host<float>();
2024-07-22 19:51:53 +08:00
float zerofp32 = (zeropoint + offset) * dequantscale;
2025-02-12 11:14:19 +08:00
gcore->MNNDynamicUpdateConvBiasScale((float*)matmulBiasPtr, biasfp32, mResourceInt8->mWeightKernelSum->host<float>(), &zerofp32, UP_DIV(output->channel(), 4));
2024-07-22 19:51:53 +08:00
// Move step for A and B for each block computing
2025-01-22 14:47:50 +08:00
inputZero = zeropoint;
biasPtr = matmulBiasPtr;
2024-07-22 19:51:53 +08:00
};
2025-02-12 11:14:19 +08:00
auto BatchDynamicQuant = [&](uint8_t* floatPtr, int32_t& inputZero, uint8_t* inputDequantScale, int LU, int EP, int LP, int32_t availableThreads, int8_t* dstInt8) {
2024-07-22 19:51:53 +08:00
// Allocate input max/sum/dequant/quant buffer
2025-02-12 11:14:19 +08:00
auto quantPtr = inputDequantScale + EP * QUANT_INFO_BYTES;
auto maxPtr = inputDequantScale + 2 * EP * QUANT_INFO_BYTES;
2025-01-22 14:47:50 +08:00
2024-07-22 19:51:53 +08:00
// compute sum and absmax
2025-02-12 11:14:19 +08:00
int divlu = UP_DIV(LU, availableThreads);
MNN_CONCURRENCY_BEGIN (tId, availableThreads) {
2025-01-22 14:47:50 +08:00
auto batchMax = reinterpret_cast<float*>(maxPtr + tId * EP * gcore->bytes);
2025-02-12 11:14:19 +08:00
auto ptr_ = reinterpret_cast<float*>(floatPtr + tId * divlu * gcore->bytes * EP * LP);
gcore->MNNAbsMax((float*)floatPtr, batchMax, LU, EP, LP);
} MNN_CONCURRENCY_END();
2024-07-22 19:51:53 +08:00
// Compute quant scale
2025-02-12 11:14:19 +08:00
gcore->MNNQuantScale((float*)maxPtr, (float*)quantPtr, (float*)inputDequantScale, availableThreads, EP);
2024-07-22 19:51:53 +08:00
// quant
2025-02-12 11:14:19 +08:00
auto scale_ptr = reinterpret_cast<float*>(quantPtr);
gcore->MNNDynamicQuant((float*)floatPtr, dstInt8, scale_ptr, LU, EP, LP);
2025-01-22 14:47:50 +08:00
inputZero = 0;
2024-07-22 19:51:53 +08:00
};
2025-01-22 14:47:50 +08:00
ssize_t oneScale = mUseBatchQuan ? 0 : 1;
2024-07-22 19:51:53 +08:00
if (mUseBatchQuan) {
2025-01-22 14:47:50 +08:00
biasPtr = mResourceInt8->mOriginBias->host<uint8_t>();
}
int8_t* inputDataPtr = nullptr; // Matmul input.
auto im2colSrc = input->host<uint8_t>(); // if not quant first, im2colSrc is original float input data.
auto inputsize = UP_DIV(input->channel(), PackUnit) * PackUnit * batch * input->height() * input->width();
if (mQuantFirst) { // quant first, then im2col
if (mUseBatchQuan) {
2025-02-12 11:14:19 +08:00
int icDiv4 = UP_DIV(input->channel(), PackUnit);
2025-03-12 11:35:16 +08:00
BatchDynamicQuant(input->host<uint8_t>(), inputZeroPoint, mBatchQuantInfo->host<uint8_t>(), icDiv4, inputPlane, PackUnit, 1, mQuantInput->host<int8_t>());
2025-01-22 14:47:50 +08:00
inputDataPtr = mQuantInput->host<int8_t>();
} else if (mResourceInt8->mDynamicQuant) {
2025-02-12 11:14:19 +08:00
SingleDynamicQuant(input->host<uint8_t>(), inputZeroPoint, mBatchQuantInfo->host<uint8_t>(), mDynamicBias->host<uint8_t>(), inputsize, 1, mTempMaxMinValueBuffer->host<uint8_t>(), mQuantInput->host<int8_t>());
2025-01-22 14:47:50 +08:00
inputDataPtr = mQuantInput->host<int8_t>();
} else {
// offline quant.
inputDataPtr = input->host<int8_t>();
}
im2colSrc = (uint8_t*)inputDataPtr;
}
2024-08-24 15:46:21 +08:00
if (mResourceInt8->mActBits == 4) {
2024-07-22 19:51:53 +08:00
weightBytes = 0.5;
weight_step_Y *= 0.5;
2023-12-27 17:26:44 +08:00
}
2025-02-12 11:14:19 +08:00
int blockunit = ocUp4 * 2 * QUANT_INFO_BYTES + blockL * weight_step_Y * UP_DIV(output->channel(), UNIT__);
2025-01-22 14:47:50 +08:00
auto inputchannel = input->channel();
2024-07-22 19:51:53 +08:00
SumByAxisParams sumParams;
sumParams.oneScale = oneScale;
sumParams.SRC_UNIT = SRC_UNIT;
sumParams.blockNum = mBlockNum;
sumParams.DST_XUNIT = DST_XUNIT;
sumParams.col_buffer_unit_size = col_buffer_unit_size;
sumParams.kernelCountUnitDouble = kernelCountUnitDouble;
2025-01-22 14:47:50 +08:00
sumParams.valid = inputchannel % SRC_UNIT;
sumParams.kernelxy = mIm2ColParamter.kernelX * mIm2ColParamter.kernelY;
sumParams.LU = UP_DIV(inputchannel, SRC_UNIT);
int im2colBytes = mQuantFirst == true ? 1 : gcore->bytes;
2024-08-24 15:46:21 +08:00
2025-01-22 14:47:50 +08:00
auto tileSplitFunction = [&](int tId, int eStartIndex, int eEndIndex, int estep) {
2024-07-22 19:51:53 +08:00
auto ocDivThread = ocDiv4;
2024-08-24 15:46:21 +08:00
float* reluPtr = mResourceInt8->mReluThreshold.data();
2024-07-22 19:51:53 +08:00
QuanPostTreatParameters quanParam;
quanParam.blockNum = mBlockNum;
2025-02-12 11:14:19 +08:00
float* accumbuff = nullptr;
uint8_t* extraScale = nullptr;
uint8_t* ptrExtraScale = nullptr;
if (mBatchQuantInfo.get() && mQuantFirst) {
extraScale = mBatchQuantInfo->host<uint8_t>();
ptrExtraScale = extraScale;
}
if (mBlockNum > 1) {
accumbuff = reinterpret_cast<float*>(mAccumBuffer->host<int8_t>() + tId * mAccumBuffer->stride(0) * sizeof(int32_t));
}
2024-07-22 19:51:53 +08:00
#ifdef MNN_USE_SSE
2025-02-12 11:14:19 +08:00
if (mResourceInt8->mDynamicQuant) {
quanParam.extraBias = mResourceInt8->mWeightKernelSum->host<float>();
}
2024-07-22 19:51:53 +08:00
#endif
if (dstBytes != 1) {
quanParam.useInt8 = 0;
quanParam.fp32minmax = reluPtr;
} else {
2024-08-24 15:46:21 +08:00
quanParam.maxValue = mMutableResource->mClampMax;
2024-07-22 19:51:53 +08:00
if (mResourceInt8->mRelu) {
2024-08-24 15:46:21 +08:00
quanParam.minValue = mMutableResource->mOutputZeroPoint;
2024-07-22 19:51:53 +08:00
} else {
2024-08-24 15:46:21 +08:00
quanParam.minValue = mMutableResource->mClampMin;
2024-07-22 19:51:53 +08:00
}
}
2025-01-22 14:47:50 +08:00
auto biasFloatTid = reinterpret_cast<float*>(biasPtr);
auto weightPtrTid = weightDataPtr;
2024-07-22 19:51:53 +08:00
if (mBlockNum == 1) {
quanParam.biasFloat = biasFloatTid;
}
2025-01-22 14:47:50 +08:00
// auto im2colPtr = mTempIm2ColBuffer->host<int8_t>();
[MNN:Sync] Sync internal github Commits: 8148ae75c 弗人 bugfix 14cb8ec7f 弗人 [Converter:Bugfix] bugfix for onnx depthwise convtranspose 476fbcd90 雁行 [MNN:Feature] Open AVX cast and bugfix for contentCFG. 5e26b9fd3 雁行 [Test:Feature] Add android test. 37e147b25 雁行 [MNN:Bugfix] Bugfix for floordiv. 144c185f5 tianbu.xsw hangxing fix hiai b4fd429d6 tianbu.xsw updateCacheFile bugfix -- update cache size d4ba572a8 雁行 [MNN:Bugfix] Support int8 in AVX2 and some Bugfix. 43061f07e xiaying [MNN:Bugfix] Fix bug for module mode run part of model 398cc5ab6 tianhang.yth refactor demo 736380600 xiaying [Express:Bugfix] Fix memory leak for copy branch b8dab0a27 tianhang.yth MNNFloat2Int8 sizeQuad=0 crash fix 94b95bfed ghz [BugFix]1.Better method for fast pack valid check 6a921f85e xiaying [Converter:Bugfix] Fix bug for Fuseconsttosubgraph 5f77ae889 tianhang.yth numThread bugfix a807ef879 tianhang.yth add createSession(configs, runtimeinfo) API, add pymnn demo, pymnn logcat bugfix ad05409d3 xiaying [MNN:Bugfix] Fix bug for StaticModule's sizecompute overflow, add error print for module mode 9d81b8299 xiaying [MNN:Bugfix] Fix bug for Unique op for output size = 1 03b15e9af xiaying [Test:Feature] Add MatMulBConst Test, Fix bug for single Convert c944a76ee tianhang.yth add auto backend and getSessionInfo @tianbu 91fa7267b ghz [BugFix]1.fix the error in eP check bf0041f77 ghz [BugFix]1.Fix the logic error in eP check. 2.Fix the sp align error 693871672 雁行 [CPU:Bugfix] rm adrp instruction for clang compiler bug. 1b8f6b3d8 ghz 1.Fix the wronly use of r13 in arm32 version. 2.Fix the missing callee register save and restore process. feb7ecc4c 弗人 modify log of python offline quant 040c04811 ghz [BufFix]1.replace platform-related regs. 2.fix the same problem in arm32 version 609f37db8 弗人 add log for python quant, python convert 5511dd30a ghz [BugFix]1.Add testcases in SparseConv to check all functional code branch. 2. Fix the bug in "MNNPackC4ForMatMul_A.S" in arm64, which is caused by the missing check of eReal parameter. a93ff9280 tianhang.yth add tf.Unique op support 9729ff773 allen.lk [Bugfix] Fix one arm32 instruction syntax that clang works but gcc DOES NOT work. use index instruction instead. 297c1ad14 雁行 [Expr:Bugfix] bugfix for tensor content used by shape compute. ef8c369e3 弗人 catch exception 07c2dd670 弗人 add dependence to setup, base64 encode url, add time log 177e590c1 弗人 [Python:Feature] add aliyun log for python quant tool 40a7928cf allen.lk [Debug:Sparse] 1.Add group parameter in torchscript converter. 2. Stop split running to avoid memory corruption when check failed in TransformGroupConvolution 3. fix Op split issue in TransformGroupConvolution 3bdea84a1 allen.lk [Debug:Sparse] Fix and warning one kind of segmentfault cause by memory corruption when resize ConvolutionWinograd. Avoid to use some registers as arm restriction. c3c6fbdbd allen.lk [Debug:Sparse] Fix and warning one kind of segmentfault cause by memory corruption when resize ConvolutionWinograd. Avoid to use some registers as arm restriction. bc590eee4 雁行 [Converter:Bugfix] bugfix for onnx instancenormalization convert. d8918593f tianhang.yth add auto backend and getSessionInfo @tianbu 83a198ed7 杭行 update d0dd3e09b 杭行 update 99540202e xiaying [Converter:Optimize] Opt the tensor convert insert 333d8db82 allen.lk [Debug:Sparse] Fix All platform-register r9 / x18 issue on arm32 and arm64. db5994672 杭行 merge 6293de7b8 tianbu.xsw fix pymnn updateCacheFile 5c2e11cb1 tianbu.xsw do updateCache in createSession 6e7641ff4 tianbu.xsw do not limit cacheFile for a model 5287a65e4 tianbu.xsw bugfix 52ba53a91 tianbu.xsw revert pymnn api 60284d830 tianbu.xsw bugfix 6d8077490 tianbu.xsw rename updateCacheFile api params 3cb172710 tianhang.yth updateCacheFile API size default value is 0 c5b69aabf tianbu.xsw updateCacheFile python api fix 5d5da7aa5 tianbu.xsw reflector code 5707877a4 雁行 [MNN:Speed] Speedup for softmax in x86 and arm. 2a211825c tianbu.xsw reflector code for updateCacheFile 76db3a835 tianbu.xsw [Cache Feature]: Add updateCacheFile API for increment cache b06b0fd43 allen.lk [Debug:Sparse] Fix and warning one kind of segmentfault cause by memory corruption when resize ConvolutionWinograd. Avoid to use some registers as arm restriction. e68bfa495 雁行 [Converter:Feature] Add UUID when model convert. a9cb935dc xiaying [MNN:Speed] Support c4nhwc for more fastblit 019f40353 xiaying [Converter:Refractor] Reduce memory used by MNNConvert(bert from 5G -> 1G) d2a6d3d05 xiaying [MNN:Bugfix] Fix bug for identity output not find 604d0801b xiaying [Converter:Bugfix] Fix bug for FuseGeLu 4bada2367 xiaying [MNN:Refractor] SegmentMean rewrite as segment 82070e708 xiaying [MNN:Bugfix] Fix bug for GeometryBinary e8ea4266e xiaying Fix bug for ShapeTensorConvert compute for dim = 1 error 1f1cf1991 xiaying [Tools:Bugfix] Fix system compability for fastTestOnnx 6f422efe2 xiaying [Tools:Bugfix] Remove color for checkDir for easy to dump 968f7ec88 xiaying [MNN:Speed] Support turn broadcast binary to loop 3e7aaf46f xiaying [MNN:Refractor] Set Convolution1x1Strassen support variable input/output ptr 1f65ab163 xiaying [MNN:Bugfix] Fix bug for mini mnn can't convert model d65953d47 xiaying [MNN:Bugfix] Fix bug for armv7a - android-14 + ARM82 8b68be45c xiaying [MNN:Feature] Add segment 8a8f264f5 xiaying [Vulkan:Bugfix] Remove unuseful print 025bb0fda xiaying [Converter:Bugfix] Fix bug for oneof don't support 43900251e tianbu.xsw enable setCacheFile python API ebfb05c74 tianbu.xsw [Metal Feature] support metallib obtain from walle transfer task 9665c0a79 弗人 add check for path in json file c66fef224 xiaying [Converter:Bugfix] Fix bug for oneof don't support 42f192852 xiaying [MNN:Bugfix] Fix bug for not set output / saveTensor into origin Schedule's outputs 1b95354ff 雁行 [Feature]: Support shape compute for SetDiff1D, and null input for Prod. 83966d043 xiaying [Test:Feature] Add test for static module 42d1be933 xiaying [Converter:Bugfix] Fix bug for mnn convert and static model add more outputs for origin model 9067531c3 xiaying [Converter:Refractor] formatLicence 99558bed9 xiaying [Converter:Bugfix] Count the op for unuseful and controlflow 4f6da0fa7 allen.lk [Feature:GRUMultiOutput] fix multi output dimension type c6b219bce xiaying [Converter:Feature] Turn torch converter to object dd4e68a37 xiaying [Converter:Feature] Support dump supported ops 80b6a60a3 xiaying [Converter:Info] If has output name, print output name instead of computed 015278fc3 xiaying [MNN:Refractor] Revert IfModule's debug info 23ac967c4 xiaying Don't transform for multi-input convolution/deconvolution b02b0d4de xiaying Fix bug for multi-input for conv1d 254d8b1d4 xiaying Fix bug for Conv1dSqueezeMove for multi input convolution 1d d47d0b9ca xiaying Fix bug for CPURaster's fuse nc4hw4 357c5bd33 xiaying Fix ConvBiasAdd for conv's inputs op > 1 55b1f0c9c xiaying [Converter:Bugfix] Don't transform for multi-input convolution/deconvolution 1902a30f5 xiaying [Converter:Bugfix] Fix bug for Conv1dSqueezeMove for multi input convolution 1d c23fe617b xiaying [MNN:Bugfix] Fix bug for multi-input for conv1d 8ff018426 xiaying [MNN:Bugfix] Fix bug for CPURaster's fuse nc4hw4 d4e8cd602 xiaying [Converter:Bugfix] Fix ConvBiasAdd for conv's inputs op > 1 846266b42 tianbu.xsw return when program and tune both nullptr fd67c76a9 xiaying [Converter:Bugfix] DepthwiseConvWeightMerge only valid for tflite e77a242c4 xiaying [Converter:Feature] Support tflite's half pixel be054c377 tianbu.xsw [OpenCL Bugfix] do not rewrite cache when binary program is produced 51e65aa35 xiaying [Converter:Feature] Support tflite for fp16 and multi-input convolution 1ccdfdeb5 tianbu.xsw redefine svm macro name 31234d372 tianbu.xsw [OpenCL SVM] add macro for only use wrapper d739e35da xiaying [MNN:Bugfix] Fix compile bug for grid op 24ab13c79 Joker feat(arm82): add GridSample op support in arm82 backend, AVX(by xiaying) 7b142978e xiaying [AVX512:Speed] Optimize for e <= 8 5f6febe7b tianbu.xsw code refactor 998d91b57 xiaying [Express:Speed] Merge submodule for speed 22c89146f tianhang.yth fix alpha div by zero bug and arm server compile bug 8f829a170 tianbu.xsw [OpenCL Pad] unify conv/deconv pad computing 4a28f603e xiaying [Express:Speed] Shared Const for All Submodule c74cf28f3 xiaying [MNN:Refractor] Seperate Const init and schedule 2a1eebb7a xiaying [Tools:Bugfix] Fix bug for modelTest.py count size 72f04008c xiaying [MNN:Refractor] Delete unuseful const op 1e735d03c xiaying [Converter:Bugfix] Fix bug for static module gen 4dfadbc6e xiaying [MNN:Refractor] Rewrite const init mode 1fcf0417a xiaying [MNN:Bugfix] Fix bug for deconvolutin multi-input for multi-batch 41d429cfd xiaying [Train:Bugfix] Revert convert NCHW for mnistTrain f947a5f01 xiaying [Test:Feature] Add testTrain dad59b6f6 tianbu.xsw move realize code from Backend.hpp to Tensor.cpp cf4473ad1 xiaying [Train:Bugfix] Support pad for GeometryPoolGrad 91ab13734 xiaying [MNN:Bugfix] Fix compile bug for avx512 742e80f47 xiaying [MNN:Refractor] Opt the logic for checknan judge 12543b841 xiaying [ARM82:Bugfix] Fix compile bug for ios 3a2b0a49f xiaying [ARM82:Speed] Opt Pack / Unpack for armv8 c0f1995cd xiaying [ARM82:Speed] Opt MNNPackC8FP16 and MNNUnpackC8FP16 by asm e0fc77dcf xiaying [MNN:Speed] Fix bug for DeconvolutionWithStride for C4HW4, open it 584bec578 xiaying [MNN:Bugfix] Fix bug for format set error for onnx d5bd4148d xiaying [MNN:Bugfix] Fix bug for format set error for onnx b00265841 xiaying [MNN:Bugfix] Fix bug for SparseConvolutionTiledExecutor bb09188ac xiaying [Test:Bugfix] Fix bug for run into sparse auto 426d1babd xiaying [MNN:Refractor] Small bugfix for Group convolution and pack 7d0ea1c46 tianbu.xsw [testModel Feature] support testModel.out input resize 4169c54ce xiaying [MNN:Bugfix] Fix bug for checkNAN for origin 412a82222 xiaying [Test:Bugfix] Fix bug for CheckNAN's error of matmul 319b1d425 xiaying [MNN:Bugfix] Fix bug for multi-batch for ConvInt8 050b728a6 xiaying [Test:Bugfix] Use NCHW for ConvInt8Test 7db3423a1 xiaying [OpenCL:Bugfix] Fix bug for opencl::image,opencl::buffer for C4HW4 adcec6a7f xiaying [Vulkan:Bugfix] Fix bug for invalid tensor size limit d2a7cf4e9 xiaying [Vulkan:Bugfix] Fix bug for onCopyBuffer of nc4hw4 557bebdd3 xiaying [MNN:Bugfix] Fix bug for BF16-ARM32 bbe186649 tianbu.xsw [Update AUTO mode]: fix MNN_FORWARD_AUTO choose priority 6deb23439 xiaying [MNN:Bugfix] Fix bug for GeometryBinary don't care about NC4HW4 same size b137590e4 xiaying [MNN:Bugfix] Fix bug for GeometryBinary don't care about NC4HW4 same size 7003558ea xiaying [Converter:Bugfix] Fix bug for onnx pad for serveral case b5f8cae5a xiaying [Converter:Bugfix] Fix bug for onnx pad for serveral case 29b09e125 xiaying [MNN:Bugfix] Fix bug for arm64-bf16 42ce00770 xiaying [MNN:Bugfix] Fix bug for ARM64 - float a2d89fc18 雁行 [Converter:Feature] Support Binary Unary for Torch. 7f1c0deb1 xiaying [MNN:Bugfix] Fix bug for Raster for Int8 8335a6f18 tianbu.xsw [OpenCL Shared Memory] modify data_format method b359e031b xiaying [ARM82:Bugfix] Fix bug for arm82 and speed up pack / unpack c8 24bf3fc88 雁行 [Convert:Feature] Support LayerNormFuse without gamma beta. 3e629624b xiaying [MNN:Bugfix] Fix bug for float - armv7a 2b7908ec7 tianbu.xsw modify workItemSize 3cee0d413 xiaying [MNN:Bugfix] test wrong clear 9cbbfb998 xiaying [MNN:Bugfix] fix compile bug for c++ < 14 2d7a44484 xiaying [MNN:Bugfix] fix compile bug for c++ < 14 eb7d0cb53 xiaying [Test:Bugfix] Don't test for NC4HW4 directly 7b40ca8d1 xiaying [MNN:Bugfix] Fix bug for ConvolutionGroup 2694d8a91 xiaying [MNN:Bugfix] Fix bug for CPUGridSample f89af60f6 xiaying [MNN:Bugfix] Fix compile bug for arm a151abcdd xiaying [MNN:Bugfix] Fix bug for convert for int8 / int16 b254dbe61 雁行 [MNN:Bugfix] Bugfix for Conv onClone. d08150631 xiaying [MNN:Bugfix] Fix bug for fast rcnn e5568a0df xiaying [MNN:Bugfix] Fix bug for CPURaster treat NC4HW4 fast blit 128318933 雁行 [Raster:Bugfix] bugfix for Raster merge onResize. 03caacbea xiaying [MNN:Bugfix] fix bug for CPUDeconvolution and Convolution1x1Strassen for iw != ow e1e3c245c xiaying [MNN:Bugfix] Fix bug for ConvolutionWinograd 2524cbc6d xiaying [MNN:Bugfix] Fix bug for CPUSoftmax 44ec79b8f xiaying [MNN:Bugfix] Fix bug for CPUConvolutionDepthwise / Scale / DeconvolutionDW 21ae956ce xiaying [MNN:Bugfix] Fix bug for Multi-Batch-TiledExecutor 09a5069c7 xiaying [MNN:Speed] Add offset for src and dst 6776c6784 xiaying [MNN:Bugfix] Fix bug for trainable model cc83ae30b xiaying [MNN:Bugfix] Fix bug for trainable model
2021-07-29 11:46:59 +08:00
auto colAddr = im2colPtr + tId * mTempIm2ColBuffer->stride(0);
2023-09-04 10:42:11 +08:00
auto srcPtr = (int8_t const **)(mBlitInfo.ptr() + tId * mBlitInfoStride.first);
2023-06-16 09:42:45 +08:00
auto el = (int32_t *)(srcPtr + mBlitInfoStride.second);
2024-07-22 19:51:53 +08:00
auto xKernelSumPtrTid = reinterpret_cast<float*>(srcKernelSumPtr + tId * mBlockNum * DST_XUNIT * mIm2ColCount * 4);
2023-06-16 09:42:45 +08:00
2025-01-22 14:47:50 +08:00
int32_t info[5];
2023-06-16 09:42:45 +08:00
info[1] = mIm2ColParamter.iw * mIm2ColParamter.ih * batch;
2024-07-22 19:51:53 +08:00
info[2] = static_cast<int32_t>(col_buffer_unit_size);
2023-06-16 09:42:45 +08:00
info[3] = mIm2ColParamter.strideX;
2024-07-22 19:51:53 +08:00
for (int tIndex = eStartIndex; tIndex < eEndIndex; tIndex += estep) {
2023-06-16 09:42:45 +08:00
const int xIndexStart = tIndex * DST_XUNIT * mIm2ColCount;
2025-01-22 14:47:50 +08:00
auto outputInTilePtr = outputDataPtr + xIndexStart * PackUnit * dstBytes;
2023-06-16 09:42:45 +08:00
int realDstCount = ALIMIN(plane - xIndexStart, DST_XUNIT * mIm2ColCount);
2025-02-12 11:14:19 +08:00
ptrExtraScale = mUseBatchQuan ? (extraScale + xIndexStart * QUANT_INFO_BYTES) : extraScale;
2023-06-16 09:42:45 +08:00
// im2col
2025-01-22 14:47:50 +08:00
auto res = ConvolutionTiledExecutor::turnIm2ColToBlitInfo((const float**)srcPtr, el, xIndexStart, realDstCount, mIm2ColParamter, (uint8_t*)im2colSrc, im2colBytes);
2023-06-16 09:42:45 +08:00
int number = res.first;
bool needZero = res.second;
2025-01-22 14:47:50 +08:00
if (needZero && mQuantFirst) {
#ifdef MNN_USE_SSE
2024-07-22 19:51:53 +08:00
::memset(colAddr, inputZeroPoint + 128, col_buffer_size);
2021-09-18 15:52:30 +08:00
#else
2024-07-22 19:51:53 +08:00
::memset(colAddr, inputZeroPoint, col_buffer_size);
#endif
2025-01-22 14:47:50 +08:00
} else if (needZero) {
::memset(colAddr, 0, mTempIm2ColBuffer->stride(0));
}
2023-06-16 09:42:45 +08:00
info[0] = number;
2024-07-22 19:51:53 +08:00
info[4] = realDstCount;
2025-01-22 14:47:50 +08:00
int8_t* colAddrTemp = colAddr;
if (mQuantFirst && number > 0) {
2023-06-16 09:42:45 +08:00
blitProc(colAddr, srcPtr, info, el);
2025-01-22 14:47:50 +08:00
colAddrTemp = colAddr;
} else if (number > 0) {
2025-02-12 11:14:19 +08:00
if (SRC_UNIT > PackUnit && !needZero) {
2025-01-22 14:47:50 +08:00
memset(colAddr, 0, mTempIm2ColBuffer->stride(0));
}
info[2] = realDstCount;
gcore->MNNGeneralIm2Col((float*)colAddr, (float const**)srcPtr, info, el, SRC_UNIT, PackUnit); // colAddr: [lu, realDstCount, lp]
}
if (!mQuantFirst) {
2025-02-12 11:14:19 +08:00
auto ptrInputscale = mBatchQuantInfo->host<uint8_t>() + tId * mBatchQuantInfo->stride(0);
2025-01-22 14:47:50 +08:00
if (mUseBatchQuan) {
2025-02-12 11:14:19 +08:00
BatchDynamicQuant((uint8_t*)colAddr, inputZeroPoint, ptrInputscale, kernelCountUnitDouble, realDstCount, SRC_UNIT, 1, mQuantInput->host<int8_t>() + tId * mQuantInput->stride(0));
2025-01-22 14:47:50 +08:00
} else {
biasFloatTid = reinterpret_cast<float*>(mDynamicBias->host<uint8_t>() + tId * mDynamicBias->stride(0));
auto maxMinPtr = mTempMaxMinValueBuffer->host<uint8_t>() + tId * mTempMaxMinValueBuffer->stride(0);
2025-02-12 11:14:19 +08:00
SingleDynamicQuant((uint8_t*)colAddr, inputZeroPoint, ptrInputscale, (uint8_t*)biasFloatTid, kernelCountUnitDouble*realDstCount*SRC_UNIT, 1, maxMinPtr, mQuantInput->host<int8_t>() + tId * mQuantInput->stride(0));
2025-01-22 14:47:50 +08:00
if (mBlockNum == 1) {
quanParam.biasFloat = biasFloatTid;
}
}
2025-02-12 11:14:19 +08:00
extraScale = ptrInputscale;
ptrExtraScale = ptrInputscale;
2025-01-22 14:47:50 +08:00
colAddrTemp = mQuantInput->host<int8_t>() + tId * mQuantInput->stride(0);
2023-06-16 09:42:45 +08:00
}
2024-07-22 19:51:53 +08:00
if (mResourceInt8->mWeightAsymmetricQuant) {
2025-02-12 11:14:19 +08:00
MNN_ASSERT(mBatchQuantInfo.get() && mBatchQuantInfo->host<float>());
mSumByAxisLFunc(xKernelSumPtrTid, colAddrTemp, (float*)ptrExtraScale, realDstCount, sumParams);
2024-07-22 19:51:53 +08:00
}
auto ptrX = xKernelSumPtrTid;
2025-02-12 11:14:19 +08:00
do {
int step = ALIMIN(DST_XUNIT, realDstCount);
quanParam.extraScale = (float*)ptrExtraScale;
if (mBlockNum > 1) {
memset(accumbuff, 0, ocUp4 * 4 * DST_XUNIT);
quanParam.accumBuffer = accumbuff;
}
int8_t* saveResult = nullptr;
for (int k = 0; k < mBlockNum; ++k) {
quanParam.biasFloat = nullptr;
quanParam.fp32minmax = nullptr;
if (k == 0) {
quanParam.biasFloat = biasFloatTid;
2024-07-22 19:51:53 +08:00
}
2025-02-12 11:14:19 +08:00
if (k == mBlockNum - 1) {
quanParam.fp32minmax = reluPtr;
saveResult = outputInTilePtr;
}
quanParam.srcKernelSum = ptrX + k * step;
mGemmKernel(saveResult, colAddrTemp + k * blockL * step * SRC_UNIT, weightPtrTid + k * blockunit, blockL, dstZStep * dstBytes, ocDivThread, &quanParam, step);
}
ptrX += (step * mBlockNum);
realDstCount-=step;
outputInTilePtr += DST_XUNIT * PackUnit * dstBytes;
colAddrTemp += col_buffer_unit_size;
ptrExtraScale = mUseBatchQuan ? (ptrExtraScale + step * QUANT_INFO_BYTES) : extraScale;
} while(realDstCount > 0);
}
[MNN:Sync] Sync internal github Commits: 8148ae75c 弗人 bugfix 14cb8ec7f 弗人 [Converter:Bugfix] bugfix for onnx depthwise convtranspose 476fbcd90 雁行 [MNN:Feature] Open AVX cast and bugfix for contentCFG. 5e26b9fd3 雁行 [Test:Feature] Add android test. 37e147b25 雁行 [MNN:Bugfix] Bugfix for floordiv. 144c185f5 tianbu.xsw hangxing fix hiai b4fd429d6 tianbu.xsw updateCacheFile bugfix -- update cache size d4ba572a8 雁行 [MNN:Bugfix] Support int8 in AVX2 and some Bugfix. 43061f07e xiaying [MNN:Bugfix] Fix bug for module mode run part of model 398cc5ab6 tianhang.yth refactor demo 736380600 xiaying [Express:Bugfix] Fix memory leak for copy branch b8dab0a27 tianhang.yth MNNFloat2Int8 sizeQuad=0 crash fix 94b95bfed ghz [BugFix]1.Better method for fast pack valid check 6a921f85e xiaying [Converter:Bugfix] Fix bug for Fuseconsttosubgraph 5f77ae889 tianhang.yth numThread bugfix a807ef879 tianhang.yth add createSession(configs, runtimeinfo) API, add pymnn demo, pymnn logcat bugfix ad05409d3 xiaying [MNN:Bugfix] Fix bug for StaticModule's sizecompute overflow, add error print for module mode 9d81b8299 xiaying [MNN:Bugfix] Fix bug for Unique op for output size = 1 03b15e9af xiaying [Test:Feature] Add MatMulBConst Test, Fix bug for single Convert c944a76ee tianhang.yth add auto backend and getSessionInfo @tianbu 91fa7267b ghz [BugFix]1.fix the error in eP check bf0041f77 ghz [BugFix]1.Fix the logic error in eP check. 2.Fix the sp align error 693871672 雁行 [CPU:Bugfix] rm adrp instruction for clang compiler bug. 1b8f6b3d8 ghz 1.Fix the wronly use of r13 in arm32 version. 2.Fix the missing callee register save and restore process. feb7ecc4c 弗人 modify log of python offline quant 040c04811 ghz [BufFix]1.replace platform-related regs. 2.fix the same problem in arm32 version 609f37db8 弗人 add log for python quant, python convert 5511dd30a ghz [BugFix]1.Add testcases in SparseConv to check all functional code branch. 2. Fix the bug in "MNNPackC4ForMatMul_A.S" in arm64, which is caused by the missing check of eReal parameter. a93ff9280 tianhang.yth add tf.Unique op support 9729ff773 allen.lk [Bugfix] Fix one arm32 instruction syntax that clang works but gcc DOES NOT work. use index instruction instead. 297c1ad14 雁行 [Expr:Bugfix] bugfix for tensor content used by shape compute. ef8c369e3 弗人 catch exception 07c2dd670 弗人 add dependence to setup, base64 encode url, add time log 177e590c1 弗人 [Python:Feature] add aliyun log for python quant tool 40a7928cf allen.lk [Debug:Sparse] 1.Add group parameter in torchscript converter. 2. Stop split running to avoid memory corruption when check failed in TransformGroupConvolution 3. fix Op split issue in TransformGroupConvolution 3bdea84a1 allen.lk [Debug:Sparse] Fix and warning one kind of segmentfault cause by memory corruption when resize ConvolutionWinograd. Avoid to use some registers as arm restriction. c3c6fbdbd allen.lk [Debug:Sparse] Fix and warning one kind of segmentfault cause by memory corruption when resize ConvolutionWinograd. Avoid to use some registers as arm restriction. bc590eee4 雁行 [Converter:Bugfix] bugfix for onnx instancenormalization convert. d8918593f tianhang.yth add auto backend and getSessionInfo @tianbu 83a198ed7 杭行 update d0dd3e09b 杭行 update 99540202e xiaying [Converter:Optimize] Opt the tensor convert insert 333d8db82 allen.lk [Debug:Sparse] Fix All platform-register r9 / x18 issue on arm32 and arm64. db5994672 杭行 merge 6293de7b8 tianbu.xsw fix pymnn updateCacheFile 5c2e11cb1 tianbu.xsw do updateCache in createSession 6e7641ff4 tianbu.xsw do not limit cacheFile for a model 5287a65e4 tianbu.xsw bugfix 52ba53a91 tianbu.xsw revert pymnn api 60284d830 tianbu.xsw bugfix 6d8077490 tianbu.xsw rename updateCacheFile api params 3cb172710 tianhang.yth updateCacheFile API size default value is 0 c5b69aabf tianbu.xsw updateCacheFile python api fix 5d5da7aa5 tianbu.xsw reflector code 5707877a4 雁行 [MNN:Speed] Speedup for softmax in x86 and arm. 2a211825c tianbu.xsw reflector code for updateCacheFile 76db3a835 tianbu.xsw [Cache Feature]: Add updateCacheFile API for increment cache b06b0fd43 allen.lk [Debug:Sparse] Fix and warning one kind of segmentfault cause by memory corruption when resize ConvolutionWinograd. Avoid to use some registers as arm restriction. e68bfa495 雁行 [Converter:Feature] Add UUID when model convert. a9cb935dc xiaying [MNN:Speed] Support c4nhwc for more fastblit 019f40353 xiaying [Converter:Refractor] Reduce memory used by MNNConvert(bert from 5G -> 1G) d2a6d3d05 xiaying [MNN:Bugfix] Fix bug for identity output not find 604d0801b xiaying [Converter:Bugfix] Fix bug for FuseGeLu 4bada2367 xiaying [MNN:Refractor] SegmentMean rewrite as segment 82070e708 xiaying [MNN:Bugfix] Fix bug for GeometryBinary e8ea4266e xiaying Fix bug for ShapeTensorConvert compute for dim = 1 error 1f1cf1991 xiaying [Tools:Bugfix] Fix system compability for fastTestOnnx 6f422efe2 xiaying [Tools:Bugfix] Remove color for checkDir for easy to dump 968f7ec88 xiaying [MNN:Speed] Support turn broadcast binary to loop 3e7aaf46f xiaying [MNN:Refractor] Set Convolution1x1Strassen support variable input/output ptr 1f65ab163 xiaying [MNN:Bugfix] Fix bug for mini mnn can't convert model d65953d47 xiaying [MNN:Bugfix] Fix bug for armv7a - android-14 + ARM82 8b68be45c xiaying [MNN:Feature] Add segment 8a8f264f5 xiaying [Vulkan:Bugfix] Remove unuseful print 025bb0fda xiaying [Converter:Bugfix] Fix bug for oneof don't support 43900251e tianbu.xsw enable setCacheFile python API ebfb05c74 tianbu.xsw [Metal Feature] support metallib obtain from walle transfer task 9665c0a79 弗人 add check for path in json file c66fef224 xiaying [Converter:Bugfix] Fix bug for oneof don't support 42f192852 xiaying [MNN:Bugfix] Fix bug for not set output / saveTensor into origin Schedule's outputs 1b95354ff 雁行 [Feature]: Support shape compute for SetDiff1D, and null input for Prod. 83966d043 xiaying [Test:Feature] Add test for static module 42d1be933 xiaying [Converter:Bugfix] Fix bug for mnn convert and static model add more outputs for origin model 9067531c3 xiaying [Converter:Refractor] formatLicence 99558bed9 xiaying [Converter:Bugfix] Count the op for unuseful and controlflow 4f6da0fa7 allen.lk [Feature:GRUMultiOutput] fix multi output dimension type c6b219bce xiaying [Converter:Feature] Turn torch converter to object dd4e68a37 xiaying [Converter:Feature] Support dump supported ops 80b6a60a3 xiaying [Converter:Info] If has output name, print output name instead of computed 015278fc3 xiaying [MNN:Refractor] Revert IfModule's debug info 23ac967c4 xiaying Don't transform for multi-input convolution/deconvolution b02b0d4de xiaying Fix bug for multi-input for conv1d 254d8b1d4 xiaying Fix bug for Conv1dSqueezeMove for multi input convolution 1d d47d0b9ca xiaying Fix bug for CPURaster's fuse nc4hw4 357c5bd33 xiaying Fix ConvBiasAdd for conv's inputs op > 1 55b1f0c9c xiaying [Converter:Bugfix] Don't transform for multi-input convolution/deconvolution 1902a30f5 xiaying [Converter:Bugfix] Fix bug for Conv1dSqueezeMove for multi input convolution 1d c23fe617b xiaying [MNN:Bugfix] Fix bug for multi-input for conv1d 8ff018426 xiaying [MNN:Bugfix] Fix bug for CPURaster's fuse nc4hw4 d4e8cd602 xiaying [Converter:Bugfix] Fix ConvBiasAdd for conv's inputs op > 1 846266b42 tianbu.xsw return when program and tune both nullptr fd67c76a9 xiaying [Converter:Bugfix] DepthwiseConvWeightMerge only valid for tflite e77a242c4 xiaying [Converter:Feature] Support tflite's half pixel be054c377 tianbu.xsw [OpenCL Bugfix] do not rewrite cache when binary program is produced 51e65aa35 xiaying [Converter:Feature] Support tflite for fp16 and multi-input convolution 1ccdfdeb5 tianbu.xsw redefine svm macro name 31234d372 tianbu.xsw [OpenCL SVM] add macro for only use wrapper d739e35da xiaying [MNN:Bugfix] Fix compile bug for grid op 24ab13c79 Joker feat(arm82): add GridSample op support in arm82 backend, AVX(by xiaying) 7b142978e xiaying [AVX512:Speed] Optimize for e <= 8 5f6febe7b tianbu.xsw code refactor 998d91b57 xiaying [Express:Speed] Merge submodule for speed 22c89146f tianhang.yth fix alpha div by zero bug and arm server compile bug 8f829a170 tianbu.xsw [OpenCL Pad] unify conv/deconv pad computing 4a28f603e xiaying [Express:Speed] Shared Const for All Submodule c74cf28f3 xiaying [MNN:Refractor] Seperate Const init and schedule 2a1eebb7a xiaying [Tools:Bugfix] Fix bug for modelTest.py count size 72f04008c xiaying [MNN:Refractor] Delete unuseful const op 1e735d03c xiaying [Converter:Bugfix] Fix bug for static module gen 4dfadbc6e xiaying [MNN:Refractor] Rewrite const init mode 1fcf0417a xiaying [MNN:Bugfix] Fix bug for deconvolutin multi-input for multi-batch 41d429cfd xiaying [Train:Bugfix] Revert convert NCHW for mnistTrain f947a5f01 xiaying [Test:Feature] Add testTrain dad59b6f6 tianbu.xsw move realize code from Backend.hpp to Tensor.cpp cf4473ad1 xiaying [Train:Bugfix] Support pad for GeometryPoolGrad 91ab13734 xiaying [MNN:Bugfix] Fix compile bug for avx512 742e80f47 xiaying [MNN:Refractor] Opt the logic for checknan judge 12543b841 xiaying [ARM82:Bugfix] Fix compile bug for ios 3a2b0a49f xiaying [ARM82:Speed] Opt Pack / Unpack for armv8 c0f1995cd xiaying [ARM82:Speed] Opt MNNPackC8FP16 and MNNUnpackC8FP16 by asm e0fc77dcf xiaying [MNN:Speed] Fix bug for DeconvolutionWithStride for C4HW4, open it 584bec578 xiaying [MNN:Bugfix] Fix bug for format set error for onnx d5bd4148d xiaying [MNN:Bugfix] Fix bug for format set error for onnx b00265841 xiaying [MNN:Bugfix] Fix bug for SparseConvolutionTiledExecutor bb09188ac xiaying [Test:Bugfix] Fix bug for run into sparse auto 426d1babd xiaying [MNN:Refractor] Small bugfix for Group convolution and pack 7d0ea1c46 tianbu.xsw [testModel Feature] support testModel.out input resize 4169c54ce xiaying [MNN:Bugfix] Fix bug for checkNAN for origin 412a82222 xiaying [Test:Bugfix] Fix bug for CheckNAN's error of matmul 319b1d425 xiaying [MNN:Bugfix] Fix bug for multi-batch for ConvInt8 050b728a6 xiaying [Test:Bugfix] Use NCHW for ConvInt8Test 7db3423a1 xiaying [OpenCL:Bugfix] Fix bug for opencl::image,opencl::buffer for C4HW4 adcec6a7f xiaying [Vulkan:Bugfix] Fix bug for invalid tensor size limit d2a7cf4e9 xiaying [Vulkan:Bugfix] Fix bug for onCopyBuffer of nc4hw4 557bebdd3 xiaying [MNN:Bugfix] Fix bug for BF16-ARM32 bbe186649 tianbu.xsw [Update AUTO mode]: fix MNN_FORWARD_AUTO choose priority 6deb23439 xiaying [MNN:Bugfix] Fix bug for GeometryBinary don't care about NC4HW4 same size b137590e4 xiaying [MNN:Bugfix] Fix bug for GeometryBinary don't care about NC4HW4 same size 7003558ea xiaying [Converter:Bugfix] Fix bug for onnx pad for serveral case b5f8cae5a xiaying [Converter:Bugfix] Fix bug for onnx pad for serveral case 29b09e125 xiaying [MNN:Bugfix] Fix bug for arm64-bf16 42ce00770 xiaying [MNN:Bugfix] Fix bug for ARM64 - float a2d89fc18 雁行 [Converter:Feature] Support Binary Unary for Torch. 7f1c0deb1 xiaying [MNN:Bugfix] Fix bug for Raster for Int8 8335a6f18 tianbu.xsw [OpenCL Shared Memory] modify data_format method b359e031b xiaying [ARM82:Bugfix] Fix bug for arm82 and speed up pack / unpack c8 24bf3fc88 雁行 [Convert:Feature] Support LayerNormFuse without gamma beta. 3e629624b xiaying [MNN:Bugfix] Fix bug for float - armv7a 2b7908ec7 tianbu.xsw modify workItemSize 3cee0d413 xiaying [MNN:Bugfix] test wrong clear 9cbbfb998 xiaying [MNN:Bugfix] fix compile bug for c++ < 14 2d7a44484 xiaying [MNN:Bugfix] fix compile bug for c++ < 14 eb7d0cb53 xiaying [Test:Bugfix] Don't test for NC4HW4 directly 7b40ca8d1 xiaying [MNN:Bugfix] Fix bug for ConvolutionGroup 2694d8a91 xiaying [MNN:Bugfix] Fix bug for CPUGridSample f89af60f6 xiaying [MNN:Bugfix] Fix compile bug for arm a151abcdd xiaying [MNN:Bugfix] Fix bug for convert for int8 / int16 b254dbe61 雁行 [MNN:Bugfix] Bugfix for Conv onClone. d08150631 xiaying [MNN:Bugfix] Fix bug for fast rcnn e5568a0df xiaying [MNN:Bugfix] Fix bug for CPURaster treat NC4HW4 fast blit 128318933 雁行 [Raster:Bugfix] bugfix for Raster merge onResize. 03caacbea xiaying [MNN:Bugfix] fix bug for CPUDeconvolution and Convolution1x1Strassen for iw != ow e1e3c245c xiaying [MNN:Bugfix] Fix bug for ConvolutionWinograd 2524cbc6d xiaying [MNN:Bugfix] Fix bug for CPUSoftmax 44ec79b8f xiaying [MNN:Bugfix] Fix bug for CPUConvolutionDepthwise / Scale / DeconvolutionDW 21ae956ce xiaying [MNN:Bugfix] Fix bug for Multi-Batch-TiledExecutor 09a5069c7 xiaying [MNN:Speed] Add offset for src and dst 6776c6784 xiaying [MNN:Bugfix] Fix bug for trainable model cc83ae30b xiaying [MNN:Bugfix] Fix bug for trainable model
2021-07-29 11:46:59 +08:00
};
2025-01-22 14:47:50 +08:00
auto ocSplitFunction = [&](int threads) { // Thread split by OC
auto colAddr = mTempIm2ColBuffer->host<int8_t>();
2024-12-02 10:12:08 +08:00
auto srcPtr = (int8_t const **)(mBlitInfo.ptr());
auto el = (int32_t *)(srcPtr + mBlitInfoStride.second);
auto xKernelSumPtrTid = reinterpret_cast<float*>(srcKernelSumPtr);
2024-11-18 14:37:45 +08:00
2025-01-22 14:47:50 +08:00
int32_t info[5];
2024-12-02 10:12:08 +08:00
info[1] = mIm2ColParamter.iw * mIm2ColParamter.ih * batch;
info[2] = static_cast<int32_t>(col_buffer_unit_size);
info[3] = mIm2ColParamter.strideX;
float* reluPtr = mResourceInt8->mReluThreshold.data();
2025-01-22 14:47:50 +08:00
int8_t* matmulInput;
if (mQuantFirst) { // im2col
auto res = ConvolutionTiledExecutor::turnIm2ColToBlitInfo((const float**)srcPtr, el, 0, plane, mIm2ColParamter, (uint8_t*)im2colSrc, im2colBytes);
int number = res.first;
bool needZero = res.second;
if (needZero) {
2024-12-02 10:12:08 +08:00
#ifdef MNN_USE_SSE
2025-01-22 14:47:50 +08:00
::memset(colAddr, inputZeroPoint + 128, mTempIm2ColBuffer->size());
2024-12-02 10:12:08 +08:00
#else
2025-01-22 14:47:50 +08:00
::memset(colAddr, inputZeroPoint, mTempIm2ColBuffer->size());
2024-12-02 10:12:08 +08:00
#endif
2025-01-22 14:47:50 +08:00
}
info[0] = number;
info[4] = plane;
if (number > 0) {
blitProc(colAddr, srcPtr, info, el);
}
matmulInput = colAddr;
2024-07-22 19:51:53 +08:00
}
2025-01-22 14:47:50 +08:00
if (false == mQuantFirst) {
int realDstCount = plane;
int start = 0;
auto im2colDst = colAddr;
2025-02-12 11:14:19 +08:00
auto ptrInputscale = mBatchQuantInfo->host<uint8_t>();
2025-01-22 14:47:50 +08:00
auto int8Ptr = mQuantInput->host<int8_t>();
int sizePacked = 0;
while (realDstCount > 0) {
int work = std::min(realDstCount, DST_XUNIT);
sizePacked += (work * SRC_UNIT * kernelCountUnitDouble);
auto res = ConvolutionTiledExecutor::turnIm2ColToBlitInfo((const float**)srcPtr, el, start, work, mIm2ColParamter, (uint8_t*)im2colSrc, im2colBytes);
int number = res.first;
bool needZero = res.second;
if (needZero) {
::memset(im2colDst, 0, col_buffer_unit_size * gcore->bytes);
}
info[0] = number;
info[2] = work;
if (number > 0) { // im2col
gcore->MNNGeneralIm2Col((float*)im2colDst, (float const**)srcPtr, info, el, SRC_UNIT, PackUnit); // colAddr: [lu, realDstCount, lp]
}
// batch quant
if (mUseBatchQuan) {
2025-02-12 11:14:19 +08:00
BatchDynamicQuant((uint8_t*)im2colDst, inputZeroPoint, ptrInputscale, kernelCountUnitDouble, work, SRC_UNIT, 1, int8Ptr);
2025-01-22 14:47:50 +08:00
ptrInputscale += (work * sizeof(int32_t));
int8Ptr += col_buffer_unit_size;
}
realDstCount -= work;
start += work;
im2colDst += (col_buffer_unit_size * gcore->bytes);
}
if (!mUseBatchQuan) {
2025-02-12 11:14:19 +08:00
SingleDynamicQuant((uint8_t*)colAddr, inputZeroPoint, ptrInputscale, mDynamicBias->host<uint8_t>(), sizePacked, 1, mTempMaxMinValueBuffer->host<uint8_t>(), mQuantInput->host<int8_t>());
2025-01-22 14:47:50 +08:00
}
matmulInput = mQuantInput->host<int8_t>();
2024-12-02 10:12:08 +08:00
}
2025-01-22 14:47:50 +08:00
2024-12-02 10:12:08 +08:00
if (mResourceInt8->mWeightAsymmetricQuant) {
2025-02-12 11:14:19 +08:00
MNN_ASSERT(mBatchQuantInfo.get() && mBatchQuantInfo->host<float>());
mSumByAxisLFunc(xKernelSumPtrTid, matmulInput, mBatchQuantInfo->host<float>(), plane, sumParams);
2024-12-02 10:12:08 +08:00
}
2024-08-24 15:46:21 +08:00
MNN_CONCURRENCY_BEGIN(tId, threads) {
2024-07-22 19:51:53 +08:00
int ocIndex = PackUnit * mDivides[tId];
2024-12-02 10:12:08 +08:00
auto ocDivThread = ALIMIN(mDivides[tId + 1] - mDivides[tId], ocDiv4 - mDivides[tId]);
2024-10-22 15:11:21 +08:00
if (ocIndex < ocUp4) {
2025-01-22 14:47:50 +08:00
auto colAddrTemp = matmulInput;
2024-12-02 10:12:08 +08:00
QuanPostTreatParameters quanParam;
quanParam.blockNum = mBlockNum;
uint8_t* extraScale = nullptr; // input scale for batch dynamic quant.
2025-02-12 11:14:19 +08:00
uint8_t* ptrExtraScale = nullptr;
float* accumbuff = nullptr;
if (mBatchQuantInfo.get()) {
extraScale = mBatchQuantInfo->host<uint8_t>();
ptrExtraScale = extraScale;
}
if (mBlockNum > 1) {
accumbuff = reinterpret_cast<float*>(mAccumBuffer->host<int8_t>() + tId * mAccumBuffer->stride(0) * sizeof(int32_t));
2024-12-02 10:12:08 +08:00
}
#ifdef MNN_USE_SSE
2025-02-12 11:14:19 +08:00
if (mResourceInt8->mDynamicQuant) {
quanParam.extraBias = mResourceInt8->mWeightKernelSum->host<float>() + ocIndex;
}
2024-12-02 10:12:08 +08:00
#endif
if (dstBytes != 1) {
quanParam.useInt8 = 0;
quanParam.fp32minmax = reluPtr;
} else {
quanParam.maxValue = mMutableResource->mClampMax;
if (mResourceInt8->mRelu) {
quanParam.minValue = mMutableResource->mOutputZeroPoint;
} else {
quanParam.minValue = mMutableResource->mClampMin;
}
}
auto outputInTilePtr = outputDataPtr + ocIndex * plane * dstBytes;
const auto biasFloatTid = reinterpret_cast<float*>(biasPtr + ocIndex * 4);
2025-02-12 11:14:19 +08:00
const auto weightPtrTid = weightDataPtr + static_cast<int32_t>(ocIndex * blockL * SRC_UNIT * weightBytes + ocIndex * 2 * QUANT_INFO_BYTES);
2024-12-02 10:12:08 +08:00
int realDstCount = plane;
auto ptrX = xKernelSumPtrTid;
2025-02-12 11:14:19 +08:00
do {
int step = ALIMIN(DST_XUNIT, realDstCount);
quanParam.extraScale = (float*)ptrExtraScale;
if (mBlockNum > 1) {
memset(accumbuff, 0, ocUp4 * 4 * DST_XUNIT);
quanParam.accumBuffer = accumbuff;
}
int8_t* saveResult = nullptr;
for (int k = 0; k < mBlockNum; ++k) {
quanParam.biasFloat = nullptr;
quanParam.fp32minmax = nullptr;
if (k == 0) {
quanParam.biasFloat = (float*)biasFloatTid;
2024-12-02 10:12:08 +08:00
}
2025-02-12 11:14:19 +08:00
if (k == mBlockNum - 1) {
quanParam.fp32minmax = reluPtr;
saveResult = outputInTilePtr;
}
quanParam.srcKernelSum = ptrX + k * step;
mGemmKernel(saveResult, colAddrTemp + k * blockL * step * SRC_UNIT, weightPtrTid + k * blockunit, blockL, dstZStep * dstBytes, ocDivThread, &quanParam, step);
}
ptrX += (step * mBlockNum);
realDstCount-=step;
outputInTilePtr += DST_XUNIT * PackUnit * dstBytes;
colAddrTemp += col_buffer_unit_size;
ptrExtraScale = mUseBatchQuan ? (ptrExtraScale + step * QUANT_INFO_BYTES) : extraScale;
} while(realDstCount > 0);
2024-08-24 15:46:21 +08:00
}
2024-07-22 19:51:53 +08:00
}
MNN_CONCURRENCY_END();
2024-12-02 10:12:08 +08:00
};
const int threads = static_cast<CPUBackend*>(backend())->threadNumber();
if (!mSplitByOc) {
MNN_CONCURRENCY_BEGIN(tId, threads) {
2025-01-22 14:47:50 +08:00
if (mDivides[tId + 1] - mDivides[tId] > 0) {
tileSplitFunction((int)tId, mDivides[tId], mDivides[tId + 1], 1);
}
2024-12-02 10:12:08 +08:00
}
MNN_CONCURRENCY_END();
} else {
2025-01-22 14:47:50 +08:00
ocSplitFunction(threads);
}
return NO_ERROR;
}
2021-09-18 15:52:30 +08:00
2024-12-31 15:34:08 +08:00
} // namespace MNN