MNN/source/backend/cpu/CPUMoments.cpp

136 lines
5.0 KiB
C++
Raw Normal View History

2019-04-17 10:49:11 +08:00
//
// CPUMoments.cpp
// MNN
//
// Created by MNN on 2019/02/28.
// Copyright © 2018, Alibaba Group Holding Limited
//
2019-12-27 22:16:57 +08:00
#include "backend/cpu/CPUMoments.hpp"
2019-04-17 10:49:11 +08:00
#include <math.h>
2019-12-27 22:16:57 +08:00
#include "backend/cpu/CPUBackend.hpp"
#include "core/Concurrency.h"
#include <MNN/MNNDefine.h>
#include "core/Macro.h"
#include "core/TensorUtils.hpp"
2019-04-17 10:49:11 +08:00
#ifdef MNN_USE_NEON
#include <arm_neon.h>
#endif
namespace MNN {
CPUMoments::CPUMoments(Backend *backend, const MNN::Op *op) : Execution(backend) {
auto momentsParam = op->main_as_MomentsParam();
if (momentsParam->dim()) {
for (int i = 0; i < momentsParam->dim()->size(); ++i) {
mAxis.push_back(momentsParam->dim()->data()[i]);
}
}
mKeepDims = momentsParam->keepDims();
MNN_ASSERT(DataType_DT_FLOAT == momentsParam->dType());
}
ErrorCode CPUMoments::onResize(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs) {
auto input = inputs[0];
mMidBuffer.reset(new Tensor(input->dimensions()));
TensorUtils::copyShape(input, mMidBuffer.get(), true);
backend()->onAcquireBuffer(mMidBuffer.get(), Backend::DYNAMIC);
backend()->onReleaseBuffer(mMidBuffer.get(), Backend::DYNAMIC);
return NO_ERROR;
}
// calculate the Mean of the Image(Height,Width)
void CPUMoments::CalculateMean(const float *src, float *dst, int batch, int channelDiv4, int inImageSize,
int inBatchStride, int outBatchStride) {
2019-04-17 10:49:11 +08:00
for (int b = 0; b < batch; ++b) {
MNN_CONCURRENCY_BEGIN(oc, channelDiv4);
const float *channelSrcPtr = src + b * inBatchStride + oc * inImageSize * 4;
float *channelDstPtr = dst + b * outBatchStride + oc * 4;
#ifdef MNN_USE_NEON
float32x4_t sum = vdupq_n_f32(0.0);
for (int i = 0; i < inImageSize; ++i) {
float32x4_t value = vld1q_f32(channelSrcPtr + i * 4);
sum = vaddq_f32(sum, value);
}
float32x4_t lengthReciprocal = vdupq_n_f32(1.0f / inImageSize);
float32x4_t result = vmulq_f32(sum, lengthReciprocal);
vst1q_f32(channelDstPtr, result);
#else
std::vector<float> sum(4, 0.0f);
for (int i = 0; i < inImageSize; ++i) {
for (int k = 0; k < 4; ++k) {
sum[k] += channelSrcPtr[i * 4 + k];
}
}
for (int j = 0; j < 4; ++j) {
channelDstPtr[j] = sum[j] / inImageSize;
}
#endif
MNN_CONCURRENCY_END();
}
}
ErrorCode CPUMoments::onExecute(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs) {
MNN_ASSERT(1 == inputs.size());
MNN_ASSERT(2 == outputs.size());
auto input = inputs[0];
auto mean = outputs[0];
auto variance = outputs[1];
// the layout of Moments is NC4HW4, now only support for calculating Moments along height and width
MNN_ASSERT(MNN_DATA_FORMAT_NC4HW4 == TensorUtils::getDescribe(input)->dimensionFormat);
MNN_ASSERT(mKeepDims);
MNN_ASSERT(mAxis.size() == 2 && mAxis[0] == 2 && mAxis[1] == 3);
const int batch = input->batch();
const int channelDiv4 = UP_DIV(mean->channel(), 4);
const int inBatchStride = input->stride(0);
const int inImagSize = input->stride(1);
const int outBatchStride = mean->stride(0);
const float *src = input->host<float>();
float *meanPtr = mean->host<float>();
float *variancePtr = variance->host<float>();
// mean
CalculateMean(src, meanPtr, batch, channelDiv4, inImagSize, inBatchStride, outBatchStride);
float *subMeanSqaure = mMidBuffer->host<float>();
// variance
for (int b = 0; b < batch; ++b) {
MNN_CONCURRENCY_BEGIN(oc, channelDiv4)
2019-04-17 10:49:11 +08:00
const float *channelMean = meanPtr + b * outBatchStride + oc * 4;
const float *channelSrcPtr = src + b * outBatchStride + oc * inImagSize * 4;
float *channelSubMeanSqaurePtr = subMeanSqaure + b * outBatchStride + oc * inImagSize * 4;
for (int i = 0; i < inImagSize; ++i) {
#ifdef MNN_USE_NEON
float32x4_t value = vld1q_f32(channelSrcPtr + i * 4);
float32x4_t mean4 = vld1q_f32(channelMean);
float32x4_t diff = vsubq_f32(value, mean4);
vst1q_f32(channelSubMeanSqaurePtr + i * 4, diff * diff);
#else
for (int k = 0; k < 4; ++k) {
auto subData = channelSrcPtr[i * 4 + k] - channelMean[k];
channelSubMeanSqaurePtr[i * 4 + k] = powf(subData, 2);
}
#endif
}
MNN_CONCURRENCY_END();
}
CalculateMean(subMeanSqaure, variancePtr, batch, channelDiv4, inImagSize, inBatchStride, outBatchStride);
return NO_ERROR;
}
class CPUMomentsCreator : public CPUBackend::Creator {
public:
virtual Execution *onCreate(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs,
const MNN::Op *op, Backend *backend) const override {
return new CPUMoments(backend, op);
}
};
REGISTER_CPU_OP_CREATOR(CPUMomentsCreator, OpType_Moments);
} // namespace MNN