2019-04-17 10:49:11 +08:00
|
|
|
//
|
|
|
|
// CPUMoments.cpp
|
|
|
|
// MNN
|
|
|
|
//
|
|
|
|
// Created by MNN on 2019/02/28.
|
|
|
|
// Copyright © 2018, Alibaba Group Holding Limited
|
|
|
|
//
|
|
|
|
|
2019-12-27 22:16:57 +08:00
|
|
|
#include "backend/cpu/CPUMoments.hpp"
|
2019-04-17 10:49:11 +08:00
|
|
|
#include <math.h>
|
2019-12-27 22:16:57 +08:00
|
|
|
#include "backend/cpu/CPUBackend.hpp"
|
|
|
|
#include "core/Concurrency.h"
|
|
|
|
#include <MNN/MNNDefine.h>
|
|
|
|
#include "core/Macro.h"
|
|
|
|
#include "core/TensorUtils.hpp"
|
2019-04-17 10:49:11 +08:00
|
|
|
|
|
|
|
#ifdef MNN_USE_NEON
|
|
|
|
#include <arm_neon.h>
|
|
|
|
#endif
|
|
|
|
|
|
|
|
namespace MNN {
|
|
|
|
|
|
|
|
CPUMoments::CPUMoments(Backend *backend, const MNN::Op *op) : Execution(backend) {
|
|
|
|
auto momentsParam = op->main_as_MomentsParam();
|
|
|
|
if (momentsParam->dim()) {
|
|
|
|
for (int i = 0; i < momentsParam->dim()->size(); ++i) {
|
|
|
|
mAxis.push_back(momentsParam->dim()->data()[i]);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
mKeepDims = momentsParam->keepDims();
|
|
|
|
MNN_ASSERT(DataType_DT_FLOAT == momentsParam->dType());
|
|
|
|
}
|
|
|
|
|
|
|
|
ErrorCode CPUMoments::onResize(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs) {
|
|
|
|
auto input = inputs[0];
|
|
|
|
mMidBuffer.reset(new Tensor(input->dimensions()));
|
|
|
|
TensorUtils::copyShape(input, mMidBuffer.get(), true);
|
|
|
|
backend()->onAcquireBuffer(mMidBuffer.get(), Backend::DYNAMIC);
|
|
|
|
backend()->onReleaseBuffer(mMidBuffer.get(), Backend::DYNAMIC);
|
|
|
|
return NO_ERROR;
|
|
|
|
}
|
|
|
|
// calculate the Mean of the Image(Height,Width)
|
2019-07-19 17:09:09 +08:00
|
|
|
void CPUMoments::CalculateMean(const float *src, float *dst, int batch, int channelDiv4, int inImageSize,
|
|
|
|
int inBatchStride, int outBatchStride) {
|
2019-04-17 10:49:11 +08:00
|
|
|
for (int b = 0; b < batch; ++b) {
|
|
|
|
MNN_CONCURRENCY_BEGIN(oc, channelDiv4);
|
|
|
|
const float *channelSrcPtr = src + b * inBatchStride + oc * inImageSize * 4;
|
|
|
|
float *channelDstPtr = dst + b * outBatchStride + oc * 4;
|
|
|
|
#ifdef MNN_USE_NEON
|
|
|
|
float32x4_t sum = vdupq_n_f32(0.0);
|
|
|
|
for (int i = 0; i < inImageSize; ++i) {
|
|
|
|
float32x4_t value = vld1q_f32(channelSrcPtr + i * 4);
|
|
|
|
sum = vaddq_f32(sum, value);
|
|
|
|
}
|
|
|
|
float32x4_t lengthReciprocal = vdupq_n_f32(1.0f / inImageSize);
|
|
|
|
float32x4_t result = vmulq_f32(sum, lengthReciprocal);
|
|
|
|
vst1q_f32(channelDstPtr, result);
|
|
|
|
#else
|
|
|
|
std::vector<float> sum(4, 0.0f);
|
|
|
|
for (int i = 0; i < inImageSize; ++i) {
|
|
|
|
for (int k = 0; k < 4; ++k) {
|
|
|
|
sum[k] += channelSrcPtr[i * 4 + k];
|
|
|
|
}
|
|
|
|
}
|
|
|
|
for (int j = 0; j < 4; ++j) {
|
|
|
|
channelDstPtr[j] = sum[j] / inImageSize;
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
MNN_CONCURRENCY_END();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
ErrorCode CPUMoments::onExecute(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs) {
|
|
|
|
MNN_ASSERT(1 == inputs.size());
|
|
|
|
MNN_ASSERT(2 == outputs.size());
|
|
|
|
auto input = inputs[0];
|
|
|
|
auto mean = outputs[0];
|
|
|
|
auto variance = outputs[1];
|
|
|
|
|
|
|
|
// the layout of Moments is NC4HW4, now only support for calculating Moments along height and width
|
|
|
|
MNN_ASSERT(MNN_DATA_FORMAT_NC4HW4 == TensorUtils::getDescribe(input)->dimensionFormat);
|
|
|
|
MNN_ASSERT(mKeepDims);
|
|
|
|
MNN_ASSERT(mAxis.size() == 2 && mAxis[0] == 2 && mAxis[1] == 3);
|
|
|
|
|
|
|
|
const int batch = input->batch();
|
|
|
|
const int channelDiv4 = UP_DIV(mean->channel(), 4);
|
|
|
|
|
|
|
|
const int inBatchStride = input->stride(0);
|
|
|
|
const int inImagSize = input->stride(1);
|
|
|
|
const int outBatchStride = mean->stride(0);
|
|
|
|
const float *src = input->host<float>();
|
|
|
|
float *meanPtr = mean->host<float>();
|
|
|
|
float *variancePtr = variance->host<float>();
|
|
|
|
// mean
|
|
|
|
CalculateMean(src, meanPtr, batch, channelDiv4, inImagSize, inBatchStride, outBatchStride);
|
|
|
|
|
|
|
|
float *subMeanSqaure = mMidBuffer->host<float>();
|
|
|
|
// variance
|
|
|
|
for (int b = 0; b < batch; ++b) {
|
2019-07-19 17:09:09 +08:00
|
|
|
MNN_CONCURRENCY_BEGIN(oc, channelDiv4)
|
2019-04-17 10:49:11 +08:00
|
|
|
const float *channelMean = meanPtr + b * outBatchStride + oc * 4;
|
|
|
|
const float *channelSrcPtr = src + b * outBatchStride + oc * inImagSize * 4;
|
|
|
|
float *channelSubMeanSqaurePtr = subMeanSqaure + b * outBatchStride + oc * inImagSize * 4;
|
|
|
|
|
|
|
|
for (int i = 0; i < inImagSize; ++i) {
|
|
|
|
#ifdef MNN_USE_NEON
|
|
|
|
float32x4_t value = vld1q_f32(channelSrcPtr + i * 4);
|
|
|
|
float32x4_t mean4 = vld1q_f32(channelMean);
|
|
|
|
float32x4_t diff = vsubq_f32(value, mean4);
|
|
|
|
vst1q_f32(channelSubMeanSqaurePtr + i * 4, diff * diff);
|
|
|
|
#else
|
|
|
|
for (int k = 0; k < 4; ++k) {
|
|
|
|
auto subData = channelSrcPtr[i * 4 + k] - channelMean[k];
|
|
|
|
channelSubMeanSqaurePtr[i * 4 + k] = powf(subData, 2);
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
MNN_CONCURRENCY_END();
|
|
|
|
}
|
|
|
|
CalculateMean(subMeanSqaure, variancePtr, batch, channelDiv4, inImagSize, inBatchStride, outBatchStride);
|
|
|
|
|
|
|
|
return NO_ERROR;
|
|
|
|
}
|
|
|
|
|
|
|
|
class CPUMomentsCreator : public CPUBackend::Creator {
|
|
|
|
public:
|
|
|
|
virtual Execution *onCreate(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs,
|
|
|
|
const MNN::Op *op, Backend *backend) const override {
|
|
|
|
return new CPUMoments(backend, op);
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
REGISTER_CPU_OP_CREATOR(CPUMomentsCreator, OpType_Moments);
|
|
|
|
|
|
|
|
} // namespace MNN
|