MNN/source/backend/cpu/CPUPoolInt8.cpp

231 lines
9.9 KiB
C++
Raw Normal View History

//
// CPUPoolInt8.cpp
// MNN
//
// Created by MNN on 2019/06/10.
// Copyright © 2018, Alibaba Group Holding Limited
//
2019-12-27 22:16:57 +08:00
#include "backend/cpu/CPUPoolInt8.hpp"
#include "core/Macro.h"
#ifdef MNN_USE_NEON
#include <arm_neon.h>
#endif
2019-12-27 22:16:57 +08:00
#include "core/Concurrency.h"
#define DST_TILE 16
#define CACHE_SIZE 128
namespace MNN {
static void poolingMaxNHWCInt8(const Tensor *src, Tensor *dst, int sx, int sy, int kx, int ky, int px, int py) {
const int inputHeight = src->length(1);
const int inputWidth = src->length(2);
const int outputHeight = dst->length(1);
const int outputWidth = dst->length(2);
const int channel = dst->length(3);
int8_t result[CACHE_SIZE];
const auto srcPtr = src->host<int8_t>();
auto dstPtr = dst->host<int8_t>();
for (int oc = 0; oc < channel; oc += CACHE_SIZE) {
const int realChannel = std::min(channel - oc, CACHE_SIZE);
for (int oy = 0; oy < outputHeight; ++oy) {
for (int ox = 0; ox < outputWidth; ++ox) {
const int srcOriginX = ox * sx - px;
const int srcOriginY = oy * sy - py;
const int kxs = std::max(0, -srcOriginX);
const int kxe = std::min(kx, inputWidth - srcOriginX);
const int kys = std::max(0, -srcOriginY);
const int kye = std::min(ky, inputHeight - srcOriginY);
const int8_t *srcCurPtr = srcPtr + oc + (srcOriginX + srcOriginY * inputWidth) * channel;
memset(result, INT8_MIN, sizeof(int8_t) * realChannel);
for (int y = kys; y < kye; ++y) {
const int8_t *srcCurRowPtr = srcCurPtr + (y * inputWidth + kxs) * channel;
for (int x = kxs; x < kxe; ++x) {
const int8_t *srcCurChannlePtr = srcCurRowPtr;
int index = 0;
#ifdef MNN_USE_NEON
for (; index <= realChannel - 16; index += 16) {
int8x16_t maxValue = vld1q_s8(result + index);
int8x16_t inputValue = vld1q_s8(srcCurChannlePtr);
srcCurChannlePtr += 16;
maxValue = vmaxq_s8(maxValue, inputValue);
vst1q_s8(result + index, maxValue);
}
for (; index <= realChannel - 8; index += 8) {
int8x8_t maxValue = vld1_s8(result + index);
int8x8_t inputValue = vld1_s8(srcCurChannlePtr);
srcCurChannlePtr += 8;
maxValue = vmax_s8(maxValue, inputValue);
vst1_s8(result + index, maxValue);
}
#endif
for (; index < realChannel; ++index) {
result[index] = std::max(result[index], *srcCurChannlePtr++);
}
srcCurRowPtr += channel;
}
}
int8_t *dstCurPtr = dstPtr + oc + (ox + oy * outputWidth) * channel;
memcpy(dstCurPtr, result, sizeof(int8_t) * realChannel);
}
}
}
}
static void poolingAvgNHWCInt8(const Tensor *src, Tensor *dst, int sx, int sy, int kx, int ky, int px, int py) {
const int inputHeight = src->length(1);
const int inputWidth = src->length(2);
const int outputHeight = dst->length(1);
const int outputWidth = dst->length(2);
const int channel = dst->length(3);
int16_t result[CACHE_SIZE];
const auto srcPtr = src->host<int8_t>();
auto dstPtr = dst->host<int8_t>();
for (int oc = 0; oc < channel; oc += CACHE_SIZE) {
const int realChannel = std::min(channel - oc, CACHE_SIZE);
for (int oy = 0; oy < outputHeight; ++oy) {
for (int ox = 0; ox < outputWidth; ++ox) {
const int srcOriginX = ox * sx - px;
const int srcOriginY = oy * sy - py;
const int kxs = std::max(0, -srcOriginX);
const int kxe = std::min(kx, inputWidth - srcOriginX);
const int kys = std::max(0, -srcOriginY);
const int kye = std::min(ky, inputHeight - srcOriginY);
const int kernelCount = (kxe - kxs) * (kye - kys);
const int8_t *srcCurPtr = srcPtr + oc + (srcOriginX + srcOriginY * inputWidth) * channel;
memset(result, 0, sizeof(int16_t) * realChannel);
for (int y = kys; y < kye; ++y) {
const int8_t *srcCurRowPtr = srcCurPtr + (y * inputWidth + kxs) * channel;
for (int x = kxs; x < kxe; ++x) {
const int8_t *srcCurChannlePtr = srcCurRowPtr;
int index = 0;
#ifdef MNN_USE_NEON
for (; index <= realChannel - 16; index += 16) {
int16x8_t accResult[2];
accResult[0] = vld1q_s16(result + index);
accResult[1] = vld1q_s16(result + index + 8);
int8x16_t inputValue = vld1q_s8(srcCurChannlePtr);
srcCurChannlePtr += 16;
accResult[0] = vaddw_s8(accResult[0], vget_low_s8(inputValue));
accResult[1] = vaddw_s8(accResult[1], vget_high_s8(inputValue));
vst1q_s16(result + index, accResult[0]);
vst1q_s16(result + index + 8, accResult[1]);
}
for (; index <= realChannel - 8; index += 8) {
int16x8_t accResult = vld1q_s16(result + index);
int8x8_t inputValue = vld1_s8(srcCurChannlePtr);
srcCurChannlePtr += 8;
accResult = vaddw_s8(accResult, inputValue);
vst1q_s16(result + index, accResult);
}
#endif
for (; index < realChannel; ++index) {
result[index] += *srcCurChannlePtr++;
}
srcCurRowPtr += channel;
}
}
int8_t *dstCurPtr = dstPtr + oc + (ox + oy * outputWidth) * channel;
int index = 0;
for (; index < realChannel; ++index) {
int16_t a = result[index] > 0 ? (result[index] + kernelCount / 2) / kernelCount
: (result[index] - kernelCount / 2) / kernelCount;
dstCurPtr[index] = static_cast<int8_t>(a);
}
}
}
}
}
CPUPoolInt8::CPUPoolInt8(Backend *b, const Pool *parameter) : Execution(b), mParameter(parameter) {
}
ErrorCode CPUPoolInt8::onResize(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs) {
const auto input = inputs[0];
auto output = outputs[0];
int strideWidth = mParameter->strideX();
int strideHeight = mParameter->strideY();
int padWidth = mParameter->padX();
int padHeight = mParameter->padY();
int kernelWidth = mParameter->kernelX();
int kernelHeight = mParameter->kernelY();
const int inputWidth = input->width();
const int inputHeight = input->height();
const int outputWidth = output->width();
const int outputHeight = output->height();
kernelWidth = std::min(kernelWidth, inputWidth);
kernelHeight = std::min(kernelHeight, inputHeight);
if (mParameter->isGlobal()) {
kernelWidth = inputWidth;
kernelHeight = inputHeight;
strideWidth = inputWidth;
strideHeight = inputHeight;
padWidth = 0;
padHeight = 0;
}
if (mParameter->padType() == PoolPadType_SAME) {
int padNeededWidth = (outputWidth - 1) * strideWidth + kernelWidth - inputWidth;
int padNeededHeight = (outputHeight - 1) * strideHeight + kernelHeight - inputHeight;
padWidth = padNeededWidth > 0 ? padNeededWidth / 2 : 0;
padHeight = padNeededHeight > 0 ? padNeededHeight / 2 : 0;
}
const int channel = input->channel();
auto poolFunc = poolingMaxNHWCInt8;
if (mParameter->type() == MNN::PoolType_AVEPOOL) {
poolFunc = poolingAvgNHWCInt8;
}
mInputTemp.reset(Tensor::createDevice<int8_t>({input->batch(), inputHeight, inputWidth, channel}));
mOutputTemp.reset(Tensor::createDevice<int8_t>({output->batch(), outputHeight, outputWidth, channel}));
bool allocSucc = backend()->onAcquireBuffer(mInputTemp.get(), Backend::DYNAMIC);
allocSucc = allocSucc && backend()->onAcquireBuffer(mOutputTemp.get(), Backend::DYNAMIC);
if (!allocSucc) {
return OUT_OF_MEMORY;
}
mThreadFunction = [=](const Tensor *src, Tensor *dst) {
poolFunc(src, dst, strideWidth, strideHeight, kernelWidth, kernelHeight, padWidth, padHeight);
};
backend()->onReleaseBuffer(mInputTemp.get(), Backend::DYNAMIC);
backend()->onReleaseBuffer(mOutputTemp.get(), Backend::DYNAMIC);
return NO_ERROR;
}
ErrorCode CPUPoolInt8::onExecute(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs) {
auto input = inputs[0];
auto output = outputs[0];
backend()->onCopyBuffer(input, mInputTemp.get());
mThreadFunction(mInputTemp.get(), mOutputTemp.get());
backend()->onCopyBuffer(mOutputTemp.get(), output);
return NO_ERROR;
}
class CPUPoolInt8Creator : public CPUBackend::Creator {
public:
virtual Execution *onCreate(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs,
const MNN::Op *op, Backend *backend) const override {
return new CPUPoolInt8(backend, op->main_as_Pool());
}
};
REGISTER_CPU_OP_CREATOR(CPUPoolInt8Creator, OpType_PoolInt8);
} // namespace MNN