MNN/source/backend/cpu/compute/ConvolutionTiledExecutor.cpp

317 lines
14 KiB
C++
Raw Normal View History

2019-04-17 10:49:11 +08:00
//
// ConvolutionTiledExecutor.cpp
// MNN
//
// Created by MNN on 2018/07/16.
// Copyright © 2018, Alibaba Group Holding Limited
//
2020-11-05 16:41:56 +08:00
#include "ConvolutionTiledExecutor.hpp"
2019-12-27 22:16:57 +08:00
#include <MNN/AutoTime.hpp>
#include "backend/cpu/CPUBackend.hpp"
2020-11-05 16:41:56 +08:00
#include "CommonOptFunction.h"
2019-12-27 22:16:57 +08:00
#include "core/Concurrency.h"
2020-11-05 16:41:56 +08:00
#include "ConvOpt.h"
2019-12-27 22:16:57 +08:00
#include "core/Macro.h"
#include "core/TensorUtils.hpp"
2020-11-05 16:41:56 +08:00
#include "math/Vec.hpp"
2019-04-17 10:49:11 +08:00
2020-11-05 16:41:56 +08:00
using Vec4 = MNN::Math::Vec<float, 4>;
2019-04-17 10:49:11 +08:00
namespace MNN {
static void _initWeight(float *dest, const float *source, float* cache, int depth, int outputCount, int kernelSize) {
2020-07-04 01:21:30 +08:00
// Swap k, ic
2020-11-05 16:41:56 +08:00
int dims[4] = {
depth,
kernelSize,
kernelSize,
depth
};
2020-07-04 01:21:30 +08:00
for (int o=0; o<outputCount; ++o) {
auto dO = cache + o * depth * kernelSize;
2020-07-04 01:21:30 +08:00
auto sO = source + o * depth * kernelSize;
2020-11-05 16:41:56 +08:00
MNNTranspose32Bit((int32_t*)dO, (const int32_t*)sO, &dims[0]);
2020-07-04 01:21:30 +08:00
}
MNNPackForMatMul_B(dest, cache, outputCount, kernelSize * depth, true);
2020-07-04 01:21:30 +08:00
}
ErrorCode ConvolutionTiledExecutorMultiInput::onExecute(const std::vector<Tensor*>& inputs,
const std::vector<Tensor*>& outputs) {
int depth = inputs[1]->channel();
int outputCount = inputs[1]->batch();
if (nullptr != mTempBias) {
::memset(mTempBias->host<float>(), 0, mTempBias->size());
2019-12-27 22:16:57 +08:00
if (inputs.size() > 2) {
::memcpy(mTempBias->host<float>(), inputs[2]->host<float>(), inputs[2]->size());
}
}
_initWeight(mTempWeight->host<float>(), inputs[1]->host<float>(), mTempWeightCache->host<float>(), depth, outputCount,
2020-07-04 01:21:30 +08:00
inputs[1]->width() * inputs[1]->height());
return mProxy->onExecute(mInputs, outputs);
}
ErrorCode ConvolutionTiledExecutorMultiInput::onResize(const std::vector<Tensor*>& inputs,
const std::vector<Tensor*>& outputs) {
int depth = inputs[1]->channel();
2019-12-27 22:16:57 +08:00
int outputCount = outputs[0]->channel();
2020-07-04 01:21:30 +08:00
int eP, lP, hP;
MNNGetMatMulPackMode(&eP, &lP, &hP);
mTempWeight.reset(Tensor::createDevice<float>(
2020-07-04 01:21:30 +08:00
{UP_DIV(outputCount, hP), depth * inputs[1]->width() * inputs[1]->height(), hP}));
mTempWeightCache.reset(Tensor::createDevice<float>({depth * inputs[1]->width() * inputs[1]->height(), outputCount}));
auto res = backend()->onAcquireBuffer(mTempWeight.get(), Backend::DYNAMIC) && backend()->onAcquireBuffer(mTempWeightCache.get(), Backend::DYNAMIC);
if (!res) {
return OUT_OF_MEMORY;
}
mTempBias.reset();
2019-12-27 22:16:57 +08:00
if (inputs.size() > 2 && inputs[2]->elementSize() % 4 == 0) {
mInputs = {inputs[0], mTempWeight.get(), inputs[2]};
2020-07-23 10:35:12 +08:00
} else if (inputs.size() > 2) {
2019-12-27 22:16:57 +08:00
mTempBias.reset(Tensor::createDevice<float>({ALIGN_UP4(outputCount)}));
backend()->onAcquireBuffer(mTempBias.get(), Backend::DYNAMIC);
mInputs = {inputs[0], mTempWeight.get(), mTempBias.get()};
2020-07-23 10:35:12 +08:00
} else {
mInputs = {inputs[0], mTempWeight.get()};
}
auto errorCode = mProxy->onResize(mInputs, outputs);
backend()->onReleaseBuffer(mTempWeight.get(), Backend::DYNAMIC);
if (nullptr != mTempBias) {
backend()->onReleaseBuffer(mTempBias.get(), Backend::DYNAMIC);
}
return errorCode;
}
2019-04-17 10:49:11 +08:00
ConvolutionTiledExecutor::ConvolutionTiledExecutor(const Convolution2DCommon* common, Backend* b,
const float* originWeight, size_t originWeightSize,
const float* bias, size_t biasSize)
: MNN::Execution(b) {
2019-04-17 10:49:11 +08:00
auto outputCount = (int)biasSize;
2020-07-04 01:21:30 +08:00
int eP, lP, hP;
MNNGetMatMulPackMode(&eP, &lP, &hP);
// Don't use common->inputCount for old model common->inputCount is zero
auto srcCount = (int)originWeightSize / outputCount / common->kernelX() / common->kernelY();
mWeight.reset(Tensor::createDevice<float>(
2020-07-04 01:21:30 +08:00
{UP_DIV(outputCount, hP), UP_DIV(srcCount, 4), (int)common->kernelX(), common->kernelY(), 4 * hP}));
std::shared_ptr<Tensor> cache(Tensor::createDevice<float>({outputCount, srcCount * common->kernelX() * common->kernelY()}));
mValid = backend()->onAcquireBuffer(mWeight.get(), Backend::STATIC) && backend()->onAcquireBuffer(cache.get(), Backend::STATIC);
2019-04-17 10:49:11 +08:00
if (!mValid) {
return;
}
_initWeight(mWeight->host<float>(), originWeight, cache->host<float>(), srcCount, outputCount, common->kernelX() * common->kernelY());
backend()->onReleaseBuffer(cache.get(), Backend::STATIC);
2019-04-17 10:49:11 +08:00
mBias.reset(Tensor::createDevice<float>({ALIGN_UP4((int)biasSize)}));
mValid = backend()->onAcquireBuffer(mBias.get(), Backend::STATIC);
if (!mValid) {
return;
}
::memset(mBias->host<float>(), 0, mBias->size());
::memcpy(mBias->host<float>(), bias, biasSize * sizeof(float));
mProxy.reset(new ConvolutionTiledExecutorBasic(common, b));
2019-04-17 10:49:11 +08:00
}
ConvolutionTiledExecutor::ConvolutionTiledExecutor( // NOLINT
const Convolution2DCommon *common, // NOLINT
const RearrangedWeightParam *rearranged_params, // NOLINT
Backend *b, const float *originWeight, // NOLINT
size_t originWeightSize, const float *bias, size_t biasSize)
: MNN::Execution(b) {
if (!rearranged_params || // NOLINT
rearranged_params->type() == RearrangedType_RT_NONE) {
new (this)ConvolutionTiledExecutor(common, b, originWeight, // NOLINT
originWeightSize, bias, biasSize);
return;
}
MNN_CHECK(b->type() == rearranged_params->backend(),
"Backend types are not match.");
MNN_CHECK(rearranged_params->weight(), "Rearranged weight is empty.");
int output_channels = common->outputCount();
int input_channels = common->inputCount();
int eP, lP, hP;
MNNGetMatMulPackMode(&eP, &lP, &hP);
mBorrowedWeight = true;
mWeight.reset(Tensor::createDevice<float>({UP_DIV(output_channels, hP), // NOLINT
UP_DIV(input_channels, 4), // NOLINT
common->kernelX(), // NOLINT
common->kernelY(), 4 * hP}));
size_t size = mWeight->elementSize();
MNN_CHECK(size == rearranged_params->weight()->size(),
"Rearranged weight size is incorrect.");
// Should make sure that the rearranged weight will not be released.
mWeight->buffer().host = (uint8_t*)(rearranged_params->weight()->data());
mBias.reset(Tensor::createDevice<float>({ALIGN_UP4((int)biasSize)}));
mValid = backend()->onAcquireBuffer(mBias.get(), Backend::STATIC);
if (!mValid) {
return;
}
::memset(mBias->host<float>(), 0, mBias->size());
::memcpy(mBias->host<float>(), bias, biasSize * sizeof(float));
mProxy.reset(new ConvolutionTiledExecutorBasic(common, b));
}
2019-04-17 10:49:11 +08:00
ConvolutionTiledExecutor::~ConvolutionTiledExecutor() {
if (nullptr != mBias) {
backend()->onReleaseBuffer(mBias.get(), Backend::STATIC);
}
if (nullptr != mWeight && !mBorrowedWeight) {
2019-04-17 10:49:11 +08:00
backend()->onReleaseBuffer(mWeight.get(), Backend::STATIC);
}
}
ErrorCode ConvolutionTiledExecutorBasic::onResize(const std::vector<Tensor*>& inputs,
const std::vector<Tensor*>& outputs) {
2019-04-17 10:49:11 +08:00
CPUConvolution::onResize(inputs, outputs);
auto input = inputs[0];
auto weight = inputs[1];
2020-07-23 10:35:12 +08:00
Tensor* bias = nullptr;
const float* biasPtr = nullptr;
if (inputs.size() > 2) {
bias = inputs[2];
biasPtr = bias->host<float>();
}
2019-04-17 10:49:11 +08:00
auto output = outputs[0];
2020-07-23 10:35:12 +08:00
auto width = output->width();
auto height = output->height();
int threadNumber = ((CPUBackend*)backend())->threadNumber();
auto weightPtr = weight->host<float>();
2020-07-23 10:35:12 +08:00
auto src_width = input->width();
auto src_height = input->height();
int src_z_step = input->width() * input->height() * 4;
2020-07-04 01:21:30 +08:00
int eP, lP, hP;
MNNGetMatMulPackMode(&eP, &lP, &hP);
auto CONVOLUTION_TILED_NUMBER = eP;
2019-04-17 10:49:11 +08:00
auto& tempBuffer = mTempBuffer.buffer();
- build: - unify schema building in core and converter; - add more build script for android; - add linux build script for python; - ops impl: - add floor mod support in binary; - use eltwise impl in add/max/sub/mul binary for optimization; - remove fake double support in cast; - fix 5d support for concat; - add adjX and adjY support for batch matmul; - optimize conv2d back prop filter; - add pad mode support for conv3d; - fix bug in conv2d & conv depthwise with very small feature map; - optimize binary without broacast; - add data types support for gather; - add gather ND support; - use uint8 data type in gather v2; - add transpose support for matmul; - add matrix band part; - add dim != 4 support for padding, reshape & tensor convert; - add pad type support for pool3d; - make ops based on TensorFlow Lite quantization optional; - add all & any support for reduction; - use type in parameter as output type in reduction; - add int support for unary; - add variable weight support for conv2d; - fix conv2d depthwise weights initialization; - fix type support for transpose; - fix grad outputs count for reduce grad and reshape grad; - fix priorbox & detection output; - fix metal softmax error; - python: - add runSessionWithCallBackInfo interface; - add max nodes limit (1400) for visualization tool; - fix save error in python3; - align default dim; - convert: - add extra design for optimization; - add more post converting optimizers; - add caffe v1 weights blob support; - add cast, unary, conv transpose support for onnx model; - optimize batchnorm, conv with variable weights, prelu, reshape, slice, upsample for onnx model; - add cos/sin/atan/tan support for unary for tensorflow model; - add any/all support for reduction for tensorflow model; - add elu, conv3d, pool3d support for tensorflow model; - optimize argmax, batchnorm, concat, batch to space, conv with variable weights, prelu, slice for tensorflow model; - others: - fix size computer lock; - fix thread pool deadlock; - add express & parameters in express; - rewrite blitter chooser without static map; - add tests for expr;
2019-10-29 13:37:26 +08:00
auto icC4 = UP_DIV(input->channel(), 4);
2020-07-04 01:21:30 +08:00
auto ic = input->channel();
auto L = input->channel() * mCommon->kernelY() * mCommon->kernelX();
auto kernelSize = mCommon->kernelX() * mCommon->kernelY();
2019-04-17 10:49:11 +08:00
tempBuffer.dim[0].extent = threadNumber;
- build: - unify schema building in core and converter; - add more build script for android; - add linux build script for python; - ops impl: - add floor mod support in binary; - use eltwise impl in add/max/sub/mul binary for optimization; - remove fake double support in cast; - fix 5d support for concat; - add adjX and adjY support for batch matmul; - optimize conv2d back prop filter; - add pad mode support for conv3d; - fix bug in conv2d & conv depthwise with very small feature map; - optimize binary without broacast; - add data types support for gather; - add gather ND support; - use uint8 data type in gather v2; - add transpose support for matmul; - add matrix band part; - add dim != 4 support for padding, reshape & tensor convert; - add pad type support for pool3d; - make ops based on TensorFlow Lite quantization optional; - add all & any support for reduction; - use type in parameter as output type in reduction; - add int support for unary; - add variable weight support for conv2d; - fix conv2d depthwise weights initialization; - fix type support for transpose; - fix grad outputs count for reduce grad and reshape grad; - fix priorbox & detection output; - fix metal softmax error; - python: - add runSessionWithCallBackInfo interface; - add max nodes limit (1400) for visualization tool; - fix save error in python3; - align default dim; - convert: - add extra design for optimization; - add more post converting optimizers; - add caffe v1 weights blob support; - add cast, unary, conv transpose support for onnx model; - optimize batchnorm, conv with variable weights, prelu, reshape, slice, upsample for onnx model; - add cos/sin/atan/tan support for unary for tensorflow model; - add any/all support for reduction for tensorflow model; - add elu, conv3d, pool3d support for tensorflow model; - optimize argmax, batchnorm, concat, batch to space, conv with variable weights, prelu, slice for tensorflow model; - others: - fix size computer lock; - fix thread pool deadlock; - add express & parameters in express; - rewrite blitter chooser without static map; - add tests for expr;
2019-10-29 13:37:26 +08:00
tempBuffer.dim[1].extent = CONVOLUTION_TILED_NUMBER;
2020-07-04 01:21:30 +08:00
tempBuffer.dim[2].extent = icC4 * mCommon->kernelY() * mCommon->kernelX(); // srcCount * kx*ky
2019-04-17 10:49:11 +08:00
tempBuffer.dim[3].extent = 4;
TensorUtils::setLinearLayout(&mTempBuffer);
2020-07-23 10:35:12 +08:00
2020-07-04 01:21:30 +08:00
mTempBufferTranspose.buffer().dimensions = 2;
mTempBufferTranspose.buffer().dim[0].extent = threadNumber;
mTempBufferTranspose.buffer().dim[1].extent = L * CONVOLUTION_TILED_NUMBER;
TensorUtils::setLinearLayout(&mTempBufferTranspose);
int count = UP_DIV(width*height, CONVOLUTION_TILED_NUMBER);
int plane = width * height;
2019-04-17 10:49:11 +08:00
2020-07-04 01:21:30 +08:00
bool success = backend()->onAcquireBuffer(&mTempBuffer, Backend::DYNAMIC) && backend()->onAcquireBuffer(&mTempBufferTranspose, Backend::DYNAMIC);
2019-04-17 10:49:11 +08:00
if (!success) {
return OUT_OF_MEMORY;
}
2020-07-04 01:21:30 +08:00
auto hDiv = MNNGetC4DivNumber(hP);
auto outputChannel = output->channel();
auto oC4 = UP_DIV(outputChannel, 4);
std::shared_ptr<Tensor> cache;
if (hP % 4 != 0) {
cache.reset(Tensor::createDevice<float>({threadNumber, 4 * hDiv * eP + oC4 * 4 * eP}));
success = backend()->onAcquireBuffer(cache.get(), Backend::DYNAMIC);
if (!success) {
return OUT_OF_MEMORY;
}
backend()->onReleaseBuffer(cache.get(), Backend::DYNAMIC);
}
2019-04-17 10:49:11 +08:00
2020-07-04 01:21:30 +08:00
backend()->onReleaseBuffer(&mTempBuffer, Backend::DYNAMIC);
backend()->onReleaseBuffer(&mTempBufferTranspose, Backend::DYNAMIC);
std::vector<size_t> parameters(6);
parameters[0] = eP * sizeof(float);
parameters[1] = L;
parameters[2] = outputChannel;
parameters[3] = plane * 4 * sizeof(float);
parameters[4] = 0;
parameters[5] = 0;
- build: - unify schema building in core and converter; - add more build script for android; - add linux build script for python; - ops impl: - add floor mod support in binary; - use eltwise impl in add/max/sub/mul binary for optimization; - remove fake double support in cast; - fix 5d support for concat; - add adjX and adjY support for batch matmul; - optimize conv2d back prop filter; - add pad mode support for conv3d; - fix bug in conv2d & conv depthwise with very small feature map; - optimize binary without broacast; - add data types support for gather; - add gather ND support; - use uint8 data type in gather v2; - add transpose support for matmul; - add matrix band part; - add dim != 4 support for padding, reshape & tensor convert; - add pad type support for pool3d; - make ops based on TensorFlow Lite quantization optional; - add all & any support for reduction; - use type in parameter as output type in reduction; - add int support for unary; - add variable weight support for conv2d; - fix conv2d depthwise weights initialization; - fix type support for transpose; - fix grad outputs count for reduce grad and reshape grad; - fix priorbox & detection output; - fix metal softmax error; - python: - add runSessionWithCallBackInfo interface; - add max nodes limit (1400) for visualization tool; - fix save error in python3; - align default dim; - convert: - add extra design for optimization; - add more post converting optimizers; - add caffe v1 weights blob support; - add cast, unary, conv transpose support for onnx model; - optimize batchnorm, conv with variable weights, prelu, reshape, slice, upsample for onnx model; - add cos/sin/atan/tan support for unary for tensorflow model; - add any/all support for reduction for tensorflow model; - add elu, conv3d, pool3d support for tensorflow model; - optimize argmax, batchnorm, concat, batch to space, conv with variable weights, prelu, slice for tensorflow model; - others: - fix size computer lock; - fix thread pool deadlock; - add express & parameters in express; - rewrite blitter chooser without static map; - add tests for expr;
2019-10-29 13:37:26 +08:00
auto threadNumberFirst = std::min(threadNumber, count);
2020-07-04 01:21:30 +08:00
auto postParameters = getPostParameters();
2020-07-23 10:35:12 +08:00
mFunction.first = threadNumberFirst;
auto strideX = mCommon->strideX();
auto strideY = mCommon->strideY();
auto dilateX = mCommon->dilateX();
auto dilateY = mCommon->dilateY();
auto padY = mPadY;
auto padX = mPadX;
auto kernel_width = mCommon->kernelX();
auto kernel_height = mCommon->kernelY();
mFunction.second = [=](int tId) {
- build: - unify schema building in core and converter; - add more build script for android; - add linux build script for python; - ops impl: - add floor mod support in binary; - use eltwise impl in add/max/sub/mul binary for optimization; - remove fake double support in cast; - fix 5d support for concat; - add adjX and adjY support for batch matmul; - optimize conv2d back prop filter; - add pad mode support for conv3d; - fix bug in conv2d & conv depthwise with very small feature map; - optimize binary without broacast; - add data types support for gather; - add gather ND support; - use uint8 data type in gather v2; - add transpose support for matmul; - add matrix band part; - add dim != 4 support for padding, reshape & tensor convert; - add pad type support for pool3d; - make ops based on TensorFlow Lite quantization optional; - add all & any support for reduction; - use type in parameter as output type in reduction; - add int support for unary; - add variable weight support for conv2d; - fix conv2d depthwise weights initialization; - fix type support for transpose; - fix grad outputs count for reduce grad and reshape grad; - fix priorbox & detection output; - fix metal softmax error; - python: - add runSessionWithCallBackInfo interface; - add max nodes limit (1400) for visualization tool; - fix save error in python3; - align default dim; - convert: - add extra design for optimization; - add more post converting optimizers; - add caffe v1 weights blob support; - add cast, unary, conv transpose support for onnx model; - optimize batchnorm, conv with variable weights, prelu, reshape, slice, upsample for onnx model; - add cos/sin/atan/tan support for unary for tensorflow model; - add any/all support for reduction for tensorflow model; - add elu, conv3d, pool3d support for tensorflow model; - optimize argmax, batchnorm, concat, batch to space, conv with variable weights, prelu, slice for tensorflow model; - others: - fix size computer lock; - fix thread pool deadlock; - add express & parameters in express; - rewrite blitter chooser without static map; - add tests for expr;
2019-10-29 13:37:26 +08:00
auto colBuffer = mTempBuffer.host<float>() + mTempBuffer.stride(0) * tId;
2020-07-04 01:21:30 +08:00
auto gemmBuffer = mTempBufferTranspose.host<float>() + mTempBufferTranspose.stride(0) * tId;
float* cachePtr = nullptr;
if (nullptr != cache) {
cachePtr = cache->host<float>() + tId * cache->stride(0);
}
2019-04-17 10:49:11 +08:00
for (int batchIndex = 0; batchIndex < input->batch(); ++batchIndex) {
auto dstOrigin = output->host<float>() + batchIndex * output->stride(0);
auto srcOrigin = input->host<float>() + batchIndex * input->stride(0);
- build: - unify schema building in core and converter; - add more build script for android; - add linux build script for python; - ops impl: - add floor mod support in binary; - use eltwise impl in add/max/sub/mul binary for optimization; - remove fake double support in cast; - fix 5d support for concat; - add adjX and adjY support for batch matmul; - optimize conv2d back prop filter; - add pad mode support for conv3d; - fix bug in conv2d & conv depthwise with very small feature map; - optimize binary without broacast; - add data types support for gather; - add gather ND support; - use uint8 data type in gather v2; - add transpose support for matmul; - add matrix band part; - add dim != 4 support for padding, reshape & tensor convert; - add pad type support for pool3d; - make ops based on TensorFlow Lite quantization optional; - add all & any support for reduction; - use type in parameter as output type in reduction; - add int support for unary; - add variable weight support for conv2d; - fix conv2d depthwise weights initialization; - fix type support for transpose; - fix grad outputs count for reduce grad and reshape grad; - fix priorbox & detection output; - fix metal softmax error; - python: - add runSessionWithCallBackInfo interface; - add max nodes limit (1400) for visualization tool; - fix save error in python3; - align default dim; - convert: - add extra design for optimization; - add more post converting optimizers; - add caffe v1 weights blob support; - add cast, unary, conv transpose support for onnx model; - optimize batchnorm, conv with variable weights, prelu, reshape, slice, upsample for onnx model; - add cos/sin/atan/tan support for unary for tensorflow model; - add any/all support for reduction for tensorflow model; - add elu, conv3d, pool3d support for tensorflow model; - optimize argmax, batchnorm, concat, batch to space, conv with variable weights, prelu, slice for tensorflow model; - others: - fix size computer lock; - fix thread pool deadlock; - add express & parameters in express; - rewrite blitter chooser without static map; - add tests for expr;
2019-10-29 13:37:26 +08:00
for (int x = (int)tId; x < count; x += threadNumberFirst) {
int start = (int)x * CONVOLUTION_TILED_NUMBER;
int remain = plane - start;
int xC = remain > CONVOLUTION_TILED_NUMBER ? CONVOLUTION_TILED_NUMBER : remain;
// Im2Col
::memset(colBuffer, 0, mTempBuffer.stride(0) * sizeof(float));
2020-07-04 01:21:30 +08:00
int oyBegin = start / width;
int oxBegin = start % width;
int oyEnd = (start + xC-1) / width;
remain = xC;
auto colIndex = colBuffer;
for (int oy=oyBegin; oy <= oyEnd; ++oy) {
int step = std::min(width - oxBegin, remain);
- build: - unify schema building in core and converter; - add more build script for android; - add linux build script for python; - ops impl: - add floor mod support in binary; - use eltwise impl in add/max/sub/mul binary for optimization; - remove fake double support in cast; - fix 5d support for concat; - add adjX and adjY support for batch matmul; - optimize conv2d back prop filter; - add pad mode support for conv3d; - fix bug in conv2d & conv depthwise with very small feature map; - optimize binary without broacast; - add data types support for gather; - add gather ND support; - use uint8 data type in gather v2; - add transpose support for matmul; - add matrix band part; - add dim != 4 support for padding, reshape & tensor convert; - add pad type support for pool3d; - make ops based on TensorFlow Lite quantization optional; - add all & any support for reduction; - use type in parameter as output type in reduction; - add int support for unary; - add variable weight support for conv2d; - fix conv2d depthwise weights initialization; - fix type support for transpose; - fix grad outputs count for reduce grad and reshape grad; - fix priorbox & detection output; - fix metal softmax error; - python: - add runSessionWithCallBackInfo interface; - add max nodes limit (1400) for visualization tool; - fix save error in python3; - align default dim; - convert: - add extra design for optimization; - add more post converting optimizers; - add caffe v1 weights blob support; - add cast, unary, conv transpose support for onnx model; - optimize batchnorm, conv with variable weights, prelu, reshape, slice, upsample for onnx model; - add cos/sin/atan/tan support for unary for tensorflow model; - add any/all support for reduction for tensorflow model; - add elu, conv3d, pool3d support for tensorflow model; - optimize argmax, batchnorm, concat, batch to space, conv with variable weights, prelu, slice for tensorflow model; - others: - fix size computer lock; - fix thread pool deadlock; - add express & parameters in express; - rewrite blitter chooser without static map; - add tests for expr;
2019-10-29 13:37:26 +08:00
int sySta = oy * strideY - padY;
2020-07-04 01:21:30 +08:00
int kyStart = std::max(0, UP_DIV(-sySta, dilateY));
int kyEnd = std::min(kernel_height, UP_DIV(src_height - sySta, dilateY));
for (int i=0; i<step; ++i) {
int ox = i + oxBegin;
int sxSta = ox * strideX - padX;
int kxStart = std::max(0, UP_DIV(-sxSta, dilateX));
int kxEnd = std::min(kernel_width, UP_DIV(src_width - sxSta, dilateX));
// ivec2 sfxy = max(ivec2(0), (UP_DIV(-s0, uConstant.dilate)));
// ivec2 efxy = min(uConstant.kernelSize, UP_DIV(inputSize.xy-s0, uConstant.dilate));
auto srcStart = srcOrigin + sxSta * 4 + sySta * 4 * src_width;
auto dstStart = colIndex + 4 * i;
for (int sz=0; sz<icC4; ++sz) {
auto srcZ = srcStart + src_z_step * sz;
auto dstZ = dstStart + 4 * CONVOLUTION_TILED_NUMBER * kernel_height * kernel_width * sz;
for (int ky=kyStart; ky<kyEnd; ++ky) {
auto sy = ky * dilateY;
auto srcY = srcZ + sy * 4 * src_width;
auto dstY = dstZ + 4 * CONVOLUTION_TILED_NUMBER * (ky*kernel_width);
for (int kx=kxStart; kx<kxEnd; ++kx) {
auto sx = kx * dilateX;
auto srcX = srcY + sx * 4;
auto dstX = dstY + 4 * CONVOLUTION_TILED_NUMBER * kx;
2020-11-05 16:41:56 +08:00
Vec4::save(dstX, Vec4::load(srcX));
2020-07-04 01:21:30 +08:00
}
- build: - unify schema building in core and converter; - add more build script for android; - add linux build script for python; - ops impl: - add floor mod support in binary; - use eltwise impl in add/max/sub/mul binary for optimization; - remove fake double support in cast; - fix 5d support for concat; - add adjX and adjY support for batch matmul; - optimize conv2d back prop filter; - add pad mode support for conv3d; - fix bug in conv2d & conv depthwise with very small feature map; - optimize binary without broacast; - add data types support for gather; - add gather ND support; - use uint8 data type in gather v2; - add transpose support for matmul; - add matrix band part; - add dim != 4 support for padding, reshape & tensor convert; - add pad type support for pool3d; - make ops based on TensorFlow Lite quantization optional; - add all & any support for reduction; - use type in parameter as output type in reduction; - add int support for unary; - add variable weight support for conv2d; - fix conv2d depthwise weights initialization; - fix type support for transpose; - fix grad outputs count for reduce grad and reshape grad; - fix priorbox & detection output; - fix metal softmax error; - python: - add runSessionWithCallBackInfo interface; - add max nodes limit (1400) for visualization tool; - fix save error in python3; - align default dim; - convert: - add extra design for optimization; - add more post converting optimizers; - add caffe v1 weights blob support; - add cast, unary, conv transpose support for onnx model; - optimize batchnorm, conv with variable weights, prelu, reshape, slice, upsample for onnx model; - add cos/sin/atan/tan support for unary for tensorflow model; - add any/all support for reduction for tensorflow model; - add elu, conv3d, pool3d support for tensorflow model; - optimize argmax, batchnorm, concat, batch to space, conv with variable weights, prelu, slice for tensorflow model; - others: - fix size computer lock; - fix thread pool deadlock; - add express & parameters in express; - rewrite blitter chooser without static map; - add tests for expr;
2019-10-29 13:37:26 +08:00
}
2019-04-17 10:49:11 +08:00
}
}
2020-07-04 01:21:30 +08:00
oxBegin = 0;
remain -= step;
colIndex += 4 * step;
- build: - unify schema building in core and converter; - add more build script for android; - add linux build script for python; - ops impl: - add floor mod support in binary; - use eltwise impl in add/max/sub/mul binary for optimization; - remove fake double support in cast; - fix 5d support for concat; - add adjX and adjY support for batch matmul; - optimize conv2d back prop filter; - add pad mode support for conv3d; - fix bug in conv2d & conv depthwise with very small feature map; - optimize binary without broacast; - add data types support for gather; - add gather ND support; - use uint8 data type in gather v2; - add transpose support for matmul; - add matrix band part; - add dim != 4 support for padding, reshape & tensor convert; - add pad type support for pool3d; - make ops based on TensorFlow Lite quantization optional; - add all & any support for reduction; - use type in parameter as output type in reduction; - add int support for unary; - add variable weight support for conv2d; - fix conv2d depthwise weights initialization; - fix type support for transpose; - fix grad outputs count for reduce grad and reshape grad; - fix priorbox & detection output; - fix metal softmax error; - python: - add runSessionWithCallBackInfo interface; - add max nodes limit (1400) for visualization tool; - fix save error in python3; - align default dim; - convert: - add extra design for optimization; - add more post converting optimizers; - add caffe v1 weights blob support; - add cast, unary, conv transpose support for onnx model; - optimize batchnorm, conv with variable weights, prelu, reshape, slice, upsample for onnx model; - add cos/sin/atan/tan support for unary for tensorflow model; - add any/all support for reduction for tensorflow model; - add elu, conv3d, pool3d support for tensorflow model; - optimize argmax, batchnorm, concat, batch to space, conv with variable weights, prelu, slice for tensorflow model; - others: - fix size computer lock; - fix thread pool deadlock; - add express & parameters in express; - rewrite blitter chooser without static map; - add tests for expr;
2019-10-29 13:37:26 +08:00
}
2020-07-04 01:21:30 +08:00
- build: - unify schema building in core and converter; - add more build script for android; - add linux build script for python; - ops impl: - add floor mod support in binary; - use eltwise impl in add/max/sub/mul binary for optimization; - remove fake double support in cast; - fix 5d support for concat; - add adjX and adjY support for batch matmul; - optimize conv2d back prop filter; - add pad mode support for conv3d; - fix bug in conv2d & conv depthwise with very small feature map; - optimize binary without broacast; - add data types support for gather; - add gather ND support; - use uint8 data type in gather v2; - add transpose support for matmul; - add matrix band part; - add dim != 4 support for padding, reshape & tensor convert; - add pad type support for pool3d; - make ops based on TensorFlow Lite quantization optional; - add all & any support for reduction; - use type in parameter as output type in reduction; - add int support for unary; - add variable weight support for conv2d; - fix conv2d depthwise weights initialization; - fix type support for transpose; - fix grad outputs count for reduce grad and reshape grad; - fix priorbox & detection output; - fix metal softmax error; - python: - add runSessionWithCallBackInfo interface; - add max nodes limit (1400) for visualization tool; - fix save error in python3; - align default dim; - convert: - add extra design for optimization; - add more post converting optimizers; - add caffe v1 weights blob support; - add cast, unary, conv transpose support for onnx model; - optimize batchnorm, conv with variable weights, prelu, reshape, slice, upsample for onnx model; - add cos/sin/atan/tan support for unary for tensorflow model; - add any/all support for reduction for tensorflow model; - add elu, conv3d, pool3d support for tensorflow model; - optimize argmax, batchnorm, concat, batch to space, conv with variable weights, prelu, slice for tensorflow model; - others: - fix size computer lock; - fix thread pool deadlock; - add express & parameters in express; - rewrite blitter chooser without static map; - add tests for expr;
2019-10-29 13:37:26 +08:00
// GEMM
2020-07-04 01:21:30 +08:00
MNNPackC4ForMatMul_A(gemmBuffer, colBuffer, CONVOLUTION_TILED_NUMBER * kernelSize, ic, CONVOLUTION_TILED_NUMBER * kernelSize);
- build: - unify schema building in core and converter; - add more build script for android; - add linux build script for python; - ops impl: - add floor mod support in binary; - use eltwise impl in add/max/sub/mul binary for optimization; - remove fake double support in cast; - fix 5d support for concat; - add adjX and adjY support for batch matmul; - optimize conv2d back prop filter; - add pad mode support for conv3d; - fix bug in conv2d & conv depthwise with very small feature map; - optimize binary without broacast; - add data types support for gather; - add gather ND support; - use uint8 data type in gather v2; - add transpose support for matmul; - add matrix band part; - add dim != 4 support for padding, reshape & tensor convert; - add pad type support for pool3d; - make ops based on TensorFlow Lite quantization optional; - add all & any support for reduction; - use type in parameter as output type in reduction; - add int support for unary; - add variable weight support for conv2d; - fix conv2d depthwise weights initialization; - fix type support for transpose; - fix grad outputs count for reduce grad and reshape grad; - fix priorbox & detection output; - fix metal softmax error; - python: - add runSessionWithCallBackInfo interface; - add max nodes limit (1400) for visualization tool; - fix save error in python3; - align default dim; - convert: - add extra design for optimization; - add more post converting optimizers; - add caffe v1 weights blob support; - add cast, unary, conv transpose support for onnx model; - optimize batchnorm, conv with variable weights, prelu, reshape, slice, upsample for onnx model; - add cos/sin/atan/tan support for unary for tensorflow model; - add any/all support for reduction for tensorflow model; - add elu, conv3d, pool3d support for tensorflow model; - optimize argmax, batchnorm, concat, batch to space, conv with variable weights, prelu, slice for tensorflow model; - others: - fix size computer lock; - fix thread pool deadlock; - add express & parameters in express; - rewrite blitter chooser without static map; - add tests for expr;
2019-10-29 13:37:26 +08:00
if (xC == CONVOLUTION_TILED_NUMBER) {
2020-07-04 01:21:30 +08:00
MNNPackedMatMul(dstOrigin + start * 4, gemmBuffer, weightPtr, parameters.data(), cachePtr, postParameters.data(), biasPtr);
- build: - unify schema building in core and converter; - add more build script for android; - add linux build script for python; - ops impl: - add floor mod support in binary; - use eltwise impl in add/max/sub/mul binary for optimization; - remove fake double support in cast; - fix 5d support for concat; - add adjX and adjY support for batch matmul; - optimize conv2d back prop filter; - add pad mode support for conv3d; - fix bug in conv2d & conv depthwise with very small feature map; - optimize binary without broacast; - add data types support for gather; - add gather ND support; - use uint8 data type in gather v2; - add transpose support for matmul; - add matrix band part; - add dim != 4 support for padding, reshape & tensor convert; - add pad type support for pool3d; - make ops based on TensorFlow Lite quantization optional; - add all & any support for reduction; - use type in parameter as output type in reduction; - add int support for unary; - add variable weight support for conv2d; - fix conv2d depthwise weights initialization; - fix type support for transpose; - fix grad outputs count for reduce grad and reshape grad; - fix priorbox & detection output; - fix metal softmax error; - python: - add runSessionWithCallBackInfo interface; - add max nodes limit (1400) for visualization tool; - fix save error in python3; - align default dim; - convert: - add extra design for optimization; - add more post converting optimizers; - add caffe v1 weights blob support; - add cast, unary, conv transpose support for onnx model; - optimize batchnorm, conv with variable weights, prelu, reshape, slice, upsample for onnx model; - add cos/sin/atan/tan support for unary for tensorflow model; - add any/all support for reduction for tensorflow model; - add elu, conv3d, pool3d support for tensorflow model; - optimize argmax, batchnorm, concat, batch to space, conv with variable weights, prelu, slice for tensorflow model; - others: - fix size computer lock; - fix thread pool deadlock; - add express & parameters in express; - rewrite blitter chooser without static map; - add tests for expr;
2019-10-29 13:37:26 +08:00
} else {
2020-07-04 01:21:30 +08:00
MNNPackedMatMulRemain(dstOrigin + start * 4, gemmBuffer, weightPtr, xC, parameters.data(), cachePtr, postParameters.data(), biasPtr);
2019-04-17 10:49:11 +08:00
}
}
}
};
return NO_ERROR;
}
ErrorCode ConvolutionTiledExecutorBasic::onExecute(const std::vector<Tensor*>& inputs,
const std::vector<Tensor*>& outputs) {
2020-07-23 10:35:12 +08:00
MNN_CONCURRENCY_BEGIN(tId, mFunction.first) {
mFunction.second((int)tId);
2019-04-17 10:49:11 +08:00
}
2020-07-23 10:35:12 +08:00
MNN_CONCURRENCY_END();
2019-04-17 10:49:11 +08:00
return NO_ERROR;
}
} // namespace MNN