2019-04-17 10:49:11 +08:00
|
|
|
//
|
|
|
|
// CPUQuantizedConcat.cpp
|
|
|
|
// MNN
|
|
|
|
//
|
|
|
|
// Created by MNN on 2018/12/12.
|
|
|
|
// Copyright © 2018, Alibaba Group Holding Limited
|
|
|
|
//
|
- build:
- unify schema building in core and converter;
- add more build script for android;
- add linux build script for python;
- ops impl:
- add floor mod support in binary;
- use eltwise impl in add/max/sub/mul binary for optimization;
- remove fake double support in cast;
- fix 5d support for concat;
- add adjX and adjY support for batch matmul;
- optimize conv2d back prop filter;
- add pad mode support for conv3d;
- fix bug in conv2d & conv depthwise with very small feature map;
- optimize binary without broacast;
- add data types support for gather;
- add gather ND support;
- use uint8 data type in gather v2;
- add transpose support for matmul;
- add matrix band part;
- add dim != 4 support for padding, reshape & tensor convert;
- add pad type support for pool3d;
- make ops based on TensorFlow Lite quantization optional;
- add all & any support for reduction;
- use type in parameter as output type in reduction;
- add int support for unary;
- add variable weight support for conv2d;
- fix conv2d depthwise weights initialization;
- fix type support for transpose;
- fix grad outputs count for reduce grad and reshape grad;
- fix priorbox & detection output;
- fix metal softmax error;
- python:
- add runSessionWithCallBackInfo interface;
- add max nodes limit (1400) for visualization tool;
- fix save error in python3;
- align default dim;
- convert:
- add extra design for optimization;
- add more post converting optimizers;
- add caffe v1 weights blob support;
- add cast, unary, conv transpose support for onnx model;
- optimize batchnorm, conv with variable weights, prelu, reshape, slice, upsample for onnx model;
- add cos/sin/atan/tan support for unary for tensorflow model;
- add any/all support for reduction for tensorflow model;
- add elu, conv3d, pool3d support for tensorflow model;
- optimize argmax, batchnorm, concat, batch to space, conv with variable weights, prelu, slice for tensorflow model;
- others:
- fix size computer lock;
- fix thread pool deadlock;
- add express & parameters in express;
- rewrite blitter chooser without static map;
- add tests for expr;
2019-10-29 13:37:26 +08:00
|
|
|
#ifdef MNN_SUPPORT_TFLITE_QUAN
|
2019-12-27 22:16:57 +08:00
|
|
|
#include "backend/cpu/CPUQuantizedConcat.hpp"
|
|
|
|
#include "backend/cpu/CPUBackend.hpp"
|
|
|
|
#include "backend/cpu/CPUFixedPoint.hpp"
|
|
|
|
#include "backend/cpu/CPUQuantizationUtils.hpp"
|
|
|
|
#include "core/Macro.h"
|
|
|
|
#include "backend/cpu/compute/OptimizedComputer.hpp"
|
2019-04-17 10:49:11 +08:00
|
|
|
|
|
|
|
namespace MNN {
|
|
|
|
|
|
|
|
CPUQuantizedConcat::CPUQuantizedConcat(Backend *backend, const Op *op) : Execution(backend) {
|
|
|
|
auto quantizedConcatParam = op->main_as_QuantizedConcat();
|
|
|
|
mAxis = quantizedConcatParam->axis();
|
|
|
|
for (int i = 0; i < quantizedConcatParam->inputZeroPoint()->size(); i++) {
|
|
|
|
mInputZeroPoint.push_back(quantizedConcatParam->inputZeroPoint()->data()[i]);
|
|
|
|
mInputScale.push_back(quantizedConcatParam->inputScale()->data()[i]);
|
|
|
|
}
|
|
|
|
mOutputZeroPoint = quantizedConcatParam->outputQuantizedParam()->zeroPoint();
|
|
|
|
mOutputScale = quantizedConcatParam->outputQuantizedParam()->scale();
|
|
|
|
}
|
|
|
|
|
|
|
|
ErrorCode CPUQuantizedConcat::onResize(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs) {
|
|
|
|
if (mAxis < 0) {
|
|
|
|
mAxis += outputs[0]->buffer().dimensions;
|
|
|
|
}
|
|
|
|
return NO_ERROR;
|
|
|
|
}
|
|
|
|
|
|
|
|
ErrorCode CPUQuantizedConcat::onExecute(const std::vector<MNN::Tensor *> &inputs,
|
|
|
|
const std::vector<MNN::Tensor *> &outputs) {
|
|
|
|
int inputsCount = (int)inputs.size();
|
|
|
|
MNN_ASSERT(inputsCount > 1);
|
|
|
|
int concatSize = 0;
|
|
|
|
int concatDim = mAxis;
|
|
|
|
|
|
|
|
for (int i = 0; i < inputsCount; i++) {
|
|
|
|
for (int j = 0; j < 4; j++) {
|
|
|
|
if (j != concatDim) {
|
|
|
|
MNN_ASSERT(inputs[i]->buffer().dim[j].extent == outputs[0]->buffer().dim[j].extent);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
concatSize += inputs[i]->buffer().dim[concatDim].extent;
|
|
|
|
}
|
|
|
|
MNN_ASSERT(concatSize == outputs[0]->buffer().dim[concatDim].extent);
|
|
|
|
|
|
|
|
int outerSize = 1;
|
|
|
|
for (int i = concatDim - 1; i >= 0; i--) {
|
|
|
|
outerSize *= outputs[0]->buffer().dim[i].extent;
|
|
|
|
}
|
|
|
|
|
|
|
|
const float inverseOutputScale = 1.f / mOutputScale;
|
|
|
|
uint8_t *outputPtr = outputs[0]->host<uint8_t>();
|
|
|
|
|
|
|
|
for (int k = 0; k < outerSize; k++) {
|
|
|
|
for (int i = 0; i < inputsCount; ++i) {
|
|
|
|
const int copySize = inputs[i]->buffer().dim[concatDim].extent * inputs[i]->stride(concatDim);
|
|
|
|
const uint8_t *inputPtr = inputs[i]->host<uint8_t>() + k * copySize;
|
|
|
|
if (mInputZeroPoint[i] == mOutputZeroPoint && mInputScale[i] == mOutputScale) {
|
|
|
|
memcpy(outputPtr, inputPtr, copySize);
|
|
|
|
} else {
|
|
|
|
const float scale = mInputScale[i] * inverseOutputScale;
|
|
|
|
const float bias = -mInputZeroPoint[i] * scale;
|
|
|
|
for (int j = 0; j < copySize; ++j) {
|
|
|
|
const int32_t value = static_cast<int32_t>(round(inputPtr[j] * scale + bias)) + mOutputZeroPoint;
|
|
|
|
outputPtr[j] = static_cast<uint8_t>(std::max(std::min(255, value), 0));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
outputPtr += copySize;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
return NO_ERROR;
|
|
|
|
}
|
|
|
|
|
|
|
|
class CPUQuantizedConcatCreator : public CPUBackend::Creator {
|
|
|
|
public:
|
|
|
|
virtual Execution *onCreate(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs,
|
|
|
|
const MNN::Op *op, Backend *backend) const {
|
|
|
|
return new CPUQuantizedConcat(backend, op);
|
|
|
|
}
|
|
|
|
};
|
|
|
|
REGISTER_CPU_OP_CREATOR(CPUQuantizedConcatCreator, OpType_QuantizedConcat);
|
|
|
|
} // namespace MNN
|
- build:
- unify schema building in core and converter;
- add more build script for android;
- add linux build script for python;
- ops impl:
- add floor mod support in binary;
- use eltwise impl in add/max/sub/mul binary for optimization;
- remove fake double support in cast;
- fix 5d support for concat;
- add adjX and adjY support for batch matmul;
- optimize conv2d back prop filter;
- add pad mode support for conv3d;
- fix bug in conv2d & conv depthwise with very small feature map;
- optimize binary without broacast;
- add data types support for gather;
- add gather ND support;
- use uint8 data type in gather v2;
- add transpose support for matmul;
- add matrix band part;
- add dim != 4 support for padding, reshape & tensor convert;
- add pad type support for pool3d;
- make ops based on TensorFlow Lite quantization optional;
- add all & any support for reduction;
- use type in parameter as output type in reduction;
- add int support for unary;
- add variable weight support for conv2d;
- fix conv2d depthwise weights initialization;
- fix type support for transpose;
- fix grad outputs count for reduce grad and reshape grad;
- fix priorbox & detection output;
- fix metal softmax error;
- python:
- add runSessionWithCallBackInfo interface;
- add max nodes limit (1400) for visualization tool;
- fix save error in python3;
- align default dim;
- convert:
- add extra design for optimization;
- add more post converting optimizers;
- add caffe v1 weights blob support;
- add cast, unary, conv transpose support for onnx model;
- optimize batchnorm, conv with variable weights, prelu, reshape, slice, upsample for onnx model;
- add cos/sin/atan/tan support for unary for tensorflow model;
- add any/all support for reduction for tensorflow model;
- add elu, conv3d, pool3d support for tensorflow model;
- optimize argmax, batchnorm, concat, batch to space, conv with variable weights, prelu, slice for tensorflow model;
- others:
- fix size computer lock;
- fix thread pool deadlock;
- add express & parameters in express;
- rewrite blitter chooser without static map;
- add tests for expr;
2019-10-29 13:37:26 +08:00
|
|
|
#endif
|