MNN/source/backend/cpu/CPUQuantizedConcat.cpp

92 lines
3.5 KiB
C++
Raw Normal View History

2019-04-17 10:49:11 +08:00
//
// CPUQuantizedConcat.cpp
// MNN
//
// Created by MNN on 2018/12/12.
// Copyright © 2018, Alibaba Group Holding Limited
//
- build: - unify schema building in core and converter; - add more build script for android; - add linux build script for python; - ops impl: - add floor mod support in binary; - use eltwise impl in add/max/sub/mul binary for optimization; - remove fake double support in cast; - fix 5d support for concat; - add adjX and adjY support for batch matmul; - optimize conv2d back prop filter; - add pad mode support for conv3d; - fix bug in conv2d & conv depthwise with very small feature map; - optimize binary without broacast; - add data types support for gather; - add gather ND support; - use uint8 data type in gather v2; - add transpose support for matmul; - add matrix band part; - add dim != 4 support for padding, reshape & tensor convert; - add pad type support for pool3d; - make ops based on TensorFlow Lite quantization optional; - add all & any support for reduction; - use type in parameter as output type in reduction; - add int support for unary; - add variable weight support for conv2d; - fix conv2d depthwise weights initialization; - fix type support for transpose; - fix grad outputs count for reduce grad and reshape grad; - fix priorbox & detection output; - fix metal softmax error; - python: - add runSessionWithCallBackInfo interface; - add max nodes limit (1400) for visualization tool; - fix save error in python3; - align default dim; - convert: - add extra design for optimization; - add more post converting optimizers; - add caffe v1 weights blob support; - add cast, unary, conv transpose support for onnx model; - optimize batchnorm, conv with variable weights, prelu, reshape, slice, upsample for onnx model; - add cos/sin/atan/tan support for unary for tensorflow model; - add any/all support for reduction for tensorflow model; - add elu, conv3d, pool3d support for tensorflow model; - optimize argmax, batchnorm, concat, batch to space, conv with variable weights, prelu, slice for tensorflow model; - others: - fix size computer lock; - fix thread pool deadlock; - add express & parameters in express; - rewrite blitter chooser without static map; - add tests for expr;
2019-10-29 13:37:26 +08:00
#ifdef MNN_SUPPORT_TFLITE_QUAN
2019-12-27 22:16:57 +08:00
#include "backend/cpu/CPUQuantizedConcat.hpp"
#include "backend/cpu/CPUBackend.hpp"
#include "backend/cpu/CPUFixedPoint.hpp"
#include "backend/cpu/CPUQuantizationUtils.hpp"
#include "core/Macro.h"
#include "backend/cpu/compute/OptimizedComputer.hpp"
2019-04-17 10:49:11 +08:00
namespace MNN {
CPUQuantizedConcat::CPUQuantizedConcat(Backend *backend, const Op *op) : Execution(backend) {
auto quantizedConcatParam = op->main_as_QuantizedConcat();
mAxis = quantizedConcatParam->axis();
for (int i = 0; i < quantizedConcatParam->inputZeroPoint()->size(); i++) {
mInputZeroPoint.push_back(quantizedConcatParam->inputZeroPoint()->data()[i]);
mInputScale.push_back(quantizedConcatParam->inputScale()->data()[i]);
}
mOutputZeroPoint = quantizedConcatParam->outputQuantizedParam()->zeroPoint();
mOutputScale = quantizedConcatParam->outputQuantizedParam()->scale();
}
ErrorCode CPUQuantizedConcat::onResize(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs) {
if (mAxis < 0) {
mAxis += outputs[0]->buffer().dimensions;
}
return NO_ERROR;
}
ErrorCode CPUQuantizedConcat::onExecute(const std::vector<MNN::Tensor *> &inputs,
const std::vector<MNN::Tensor *> &outputs) {
int inputsCount = (int)inputs.size();
MNN_ASSERT(inputsCount > 1);
int concatSize = 0;
int concatDim = mAxis;
for (int i = 0; i < inputsCount; i++) {
for (int j = 0; j < 4; j++) {
if (j != concatDim) {
MNN_ASSERT(inputs[i]->buffer().dim[j].extent == outputs[0]->buffer().dim[j].extent);
}
}
concatSize += inputs[i]->buffer().dim[concatDim].extent;
}
MNN_ASSERT(concatSize == outputs[0]->buffer().dim[concatDim].extent);
int outerSize = 1;
for (int i = concatDim - 1; i >= 0; i--) {
outerSize *= outputs[0]->buffer().dim[i].extent;
}
const float inverseOutputScale = 1.f / mOutputScale;
uint8_t *outputPtr = outputs[0]->host<uint8_t>();
for (int k = 0; k < outerSize; k++) {
for (int i = 0; i < inputsCount; ++i) {
const int copySize = inputs[i]->buffer().dim[concatDim].extent * inputs[i]->stride(concatDim);
const uint8_t *inputPtr = inputs[i]->host<uint8_t>() + k * copySize;
if (mInputZeroPoint[i] == mOutputZeroPoint && mInputScale[i] == mOutputScale) {
memcpy(outputPtr, inputPtr, copySize);
} else {
const float scale = mInputScale[i] * inverseOutputScale;
const float bias = -mInputZeroPoint[i] * scale;
for (int j = 0; j < copySize; ++j) {
const int32_t value = static_cast<int32_t>(round(inputPtr[j] * scale + bias)) + mOutputZeroPoint;
outputPtr[j] = static_cast<uint8_t>(std::max(std::min(255, value), 0));
}
}
outputPtr += copySize;
}
}
return NO_ERROR;
}
class CPUQuantizedConcatCreator : public CPUBackend::Creator {
public:
virtual Execution *onCreate(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs,
const MNN::Op *op, Backend *backend) const {
return new CPUQuantizedConcat(backend, op);
}
};
REGISTER_CPU_OP_CREATOR(CPUQuantizedConcatCreator, OpType_QuantizedConcat);
} // namespace MNN
- build: - unify schema building in core and converter; - add more build script for android; - add linux build script for python; - ops impl: - add floor mod support in binary; - use eltwise impl in add/max/sub/mul binary for optimization; - remove fake double support in cast; - fix 5d support for concat; - add adjX and adjY support for batch matmul; - optimize conv2d back prop filter; - add pad mode support for conv3d; - fix bug in conv2d & conv depthwise with very small feature map; - optimize binary without broacast; - add data types support for gather; - add gather ND support; - use uint8 data type in gather v2; - add transpose support for matmul; - add matrix band part; - add dim != 4 support for padding, reshape & tensor convert; - add pad type support for pool3d; - make ops based on TensorFlow Lite quantization optional; - add all & any support for reduction; - use type in parameter as output type in reduction; - add int support for unary; - add variable weight support for conv2d; - fix conv2d depthwise weights initialization; - fix type support for transpose; - fix grad outputs count for reduce grad and reshape grad; - fix priorbox & detection output; - fix metal softmax error; - python: - add runSessionWithCallBackInfo interface; - add max nodes limit (1400) for visualization tool; - fix save error in python3; - align default dim; - convert: - add extra design for optimization; - add more post converting optimizers; - add caffe v1 weights blob support; - add cast, unary, conv transpose support for onnx model; - optimize batchnorm, conv with variable weights, prelu, reshape, slice, upsample for onnx model; - add cos/sin/atan/tan support for unary for tensorflow model; - add any/all support for reduction for tensorflow model; - add elu, conv3d, pool3d support for tensorflow model; - optimize argmax, batchnorm, concat, batch to space, conv with variable weights, prelu, slice for tensorflow model; - others: - fix size computer lock; - fix thread pool deadlock; - add express & parameters in express; - rewrite blitter chooser without static map; - add tests for expr;
2019-10-29 13:37:26 +08:00
#endif