2019-04-17 10:49:11 +08:00
|
|
|
//
|
|
|
|
|
// CPUSize.cpp
|
|
|
|
|
// MNN
|
|
|
|
|
//
|
|
|
|
|
// Created by MNN on 2018/08/23.
|
|
|
|
|
// Copyright © 2018, Alibaba Group Holding Limited
|
|
|
|
|
//
|
|
|
|
|
|
2019-12-27 22:16:57 +08:00
|
|
|
#include "backend/cpu/CPUSize.hpp"
|
|
|
|
|
#include "backend/cpu/CPUBackend.hpp"
|
2019-04-17 10:49:11 +08:00
|
|
|
|
|
|
|
|
namespace MNN {
|
|
|
|
|
|
|
|
|
|
template <typename T>
|
|
|
|
|
CPUSize<T>::CPUSize(Backend *backend, const Op *op) : Execution(backend) {
|
|
|
|
|
// nothing to do
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
template <typename T>
|
|
|
|
|
ErrorCode CPUSize<T>::onExecute(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs) {
|
|
|
|
|
int count = 1;
|
|
|
|
|
for (int i = 0; i < inputs[0]->buffer().dimensions; i++) {
|
|
|
|
|
count *= inputs[0]->buffer().dim[i].extent;
|
|
|
|
|
}
|
|
|
|
|
outputs[0]->host<T>()[0] = count;
|
|
|
|
|
return NO_ERROR;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
class CPUSizeCreator : public CPUBackend::Creator {
|
|
|
|
|
public:
|
|
|
|
|
virtual Execution *onCreate(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs,
|
|
|
|
|
const MNN::Op *op, Backend *backend) const {
|
|
|
|
|
return new CPUSize<int32_t>(backend, op);
|
|
|
|
|
}
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
REGISTER_CPU_OP_CREATOR(CPUSizeCreator, OpType_Size);
|
|
|
|
|
} // namespace MNN
|