| 
									
										
										
										
											2019-04-17 10:49:11 +08:00
										 |  |  | //
 | 
					
						
							|  |  |  | //  CPUQuantizedConcat.cpp
 | 
					
						
							|  |  |  | //  MNN
 | 
					
						
							|  |  |  | //
 | 
					
						
							|  |  |  | //  Created by MNN on 2018/12/12.
 | 
					
						
							|  |  |  | //  Copyright © 2018, Alibaba Group Holding Limited
 | 
					
						
							|  |  |  | //
 | 
					
						
							| 
									
										
											  
											
												- build:
	- unify schema building in core and converter;
	- add more build script for android;
	- add linux build script for python;
- ops impl:
	- add floor mod support in binary;
	- use eltwise impl in add/max/sub/mul binary for optimization;
	- remove fake double support in cast;
	- fix 5d support for concat;
	- add adjX and adjY support for batch matmul;
	- optimize conv2d back prop filter;
	- add pad mode support for conv3d;
	- fix bug in conv2d & conv depthwise with very small feature map;
	- optimize binary without broacast;
	- add data types support for gather;
	- add gather ND support;
	- use uint8 data type in gather v2;
	- add transpose support for matmul;
	- add matrix band part;
	- add dim != 4 support for padding, reshape & tensor convert;
	- add pad type support for pool3d;
	- make ops based on TensorFlow Lite quantization optional;
	- add all & any support for reduction;
	- use type in parameter as output type in reduction;
	- add int support for unary;
	- add variable weight support for conv2d;
	- fix conv2d depthwise weights initialization;
	- fix type support for transpose;
	- fix grad outputs count for  reduce grad and reshape grad;
	- fix priorbox & detection output;
	- fix metal softmax error;
- python:
	- add runSessionWithCallBackInfo interface;
	- add max nodes limit (1400) for visualization tool;
	- fix save error in python3;
	- align default dim;
- convert:
	- add extra design for optimization;
	- add more post converting optimizers;
	- add caffe v1 weights blob support;
	- add cast, unary, conv transpose support for onnx model;
	- optimize batchnorm, conv with variable weights, prelu, reshape, slice, upsample for onnx model;
	- add cos/sin/atan/tan support for unary for tensorflow model;
	- add any/all support for reduction for tensorflow model;
	- add elu, conv3d, pool3d support for tensorflow model;
	- optimize argmax, batchnorm, concat, batch to space, conv with variable weights, prelu, slice for tensorflow model;
- others:
	- fix size computer lock;
	- fix thread pool deadlock;
	- add express & parameters in express;
	- rewrite blitter chooser without static map;
	- add tests for expr;
											
										 
											2019-10-29 13:37:26 +08:00
										 |  |  | #ifdef MNN_SUPPORT_TFLITE_QUAN
 | 
					
						
							| 
									
										
										
										
											2019-12-27 22:16:57 +08:00
										 |  |  | #include "backend/cpu/CPUQuantizedConcat.hpp"
 | 
					
						
							|  |  |  | #include "backend/cpu/CPUBackend.hpp"
 | 
					
						
							|  |  |  | #include "backend/cpu/CPUFixedPoint.hpp"
 | 
					
						
							|  |  |  | #include "backend/cpu/CPUQuantizationUtils.hpp"
 | 
					
						
							|  |  |  | #include "core/Macro.h"
 | 
					
						
							|  |  |  | #include "backend/cpu/compute/OptimizedComputer.hpp"
 | 
					
						
							| 
									
										
										
										
											2019-04-17 10:49:11 +08:00
										 |  |  | 
 | 
					
						
							|  |  |  | namespace MNN { | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | CPUQuantizedConcat::CPUQuantizedConcat(Backend *backend, const Op *op) : Execution(backend) { | 
					
						
							|  |  |  |     auto quantizedConcatParam = op->main_as_QuantizedConcat(); | 
					
						
							|  |  |  |     mAxis                     = quantizedConcatParam->axis(); | 
					
						
							|  |  |  |     for (int i = 0; i < quantizedConcatParam->inputZeroPoint()->size(); i++) { | 
					
						
							|  |  |  |         mInputZeroPoint.push_back(quantizedConcatParam->inputZeroPoint()->data()[i]); | 
					
						
							|  |  |  |         mInputScale.push_back(quantizedConcatParam->inputScale()->data()[i]); | 
					
						
							|  |  |  |     } | 
					
						
							|  |  |  |     mOutputZeroPoint = quantizedConcatParam->outputQuantizedParam()->zeroPoint(); | 
					
						
							|  |  |  |     mOutputScale     = quantizedConcatParam->outputQuantizedParam()->scale(); | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | ErrorCode CPUQuantizedConcat::onResize(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs) { | 
					
						
							|  |  |  |     if (mAxis < 0) { | 
					
						
							|  |  |  |         mAxis += outputs[0]->buffer().dimensions; | 
					
						
							|  |  |  |     } | 
					
						
							|  |  |  |     return NO_ERROR; | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | ErrorCode CPUQuantizedConcat::onExecute(const std::vector<MNN::Tensor *> &inputs, | 
					
						
							|  |  |  |                                         const std::vector<MNN::Tensor *> &outputs) { | 
					
						
							|  |  |  |     int inputsCount = (int)inputs.size(); | 
					
						
							|  |  |  |     MNN_ASSERT(inputsCount > 1); | 
					
						
							|  |  |  |     int concatSize = 0; | 
					
						
							|  |  |  |     int concatDim  = mAxis; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     for (int i = 0; i < inputsCount; i++) { | 
					
						
							|  |  |  |         for (int j = 0; j < 4; j++) { | 
					
						
							|  |  |  |             if (j != concatDim) { | 
					
						
							|  |  |  |                 MNN_ASSERT(inputs[i]->buffer().dim[j].extent == outputs[0]->buffer().dim[j].extent); | 
					
						
							|  |  |  |             } | 
					
						
							|  |  |  |         } | 
					
						
							|  |  |  |         concatSize += inputs[i]->buffer().dim[concatDim].extent; | 
					
						
							|  |  |  |     } | 
					
						
							|  |  |  |     MNN_ASSERT(concatSize == outputs[0]->buffer().dim[concatDim].extent); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     int outerSize = 1; | 
					
						
							|  |  |  |     for (int i = concatDim - 1; i >= 0; i--) { | 
					
						
							|  |  |  |         outerSize *= outputs[0]->buffer().dim[i].extent; | 
					
						
							|  |  |  |     } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     const float inverseOutputScale = 1.f / mOutputScale; | 
					
						
							|  |  |  |     uint8_t *outputPtr             = outputs[0]->host<uint8_t>(); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     for (int k = 0; k < outerSize; k++) { | 
					
						
							|  |  |  |         for (int i = 0; i < inputsCount; ++i) { | 
					
						
							|  |  |  |             const int copySize      = inputs[i]->buffer().dim[concatDim].extent * inputs[i]->stride(concatDim); | 
					
						
							|  |  |  |             const uint8_t *inputPtr = inputs[i]->host<uint8_t>() + k * copySize; | 
					
						
							|  |  |  |             if (mInputZeroPoint[i] == mOutputZeroPoint && mInputScale[i] == mOutputScale) { | 
					
						
							|  |  |  |                 memcpy(outputPtr, inputPtr, copySize); | 
					
						
							|  |  |  |             } else { | 
					
						
							|  |  |  |                 const float scale = mInputScale[i] * inverseOutputScale; | 
					
						
							|  |  |  |                 const float bias  = -mInputZeroPoint[i] * scale; | 
					
						
							|  |  |  |                 for (int j = 0; j < copySize; ++j) { | 
					
						
							|  |  |  |                     const int32_t value = static_cast<int32_t>(round(inputPtr[j] * scale + bias)) + mOutputZeroPoint; | 
					
						
							|  |  |  |                     outputPtr[j]        = static_cast<uint8_t>(std::max(std::min(255, value), 0)); | 
					
						
							|  |  |  |                 } | 
					
						
							|  |  |  |             } | 
					
						
							|  |  |  |             outputPtr += copySize; | 
					
						
							|  |  |  |         } | 
					
						
							|  |  |  |     } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     return NO_ERROR; | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | class CPUQuantizedConcatCreator : public CPUBackend::Creator { | 
					
						
							|  |  |  | public: | 
					
						
							|  |  |  |     virtual Execution *onCreate(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs, | 
					
						
							|  |  |  |                                 const MNN::Op *op, Backend *backend) const { | 
					
						
							|  |  |  |         return new CPUQuantizedConcat(backend, op); | 
					
						
							|  |  |  |     } | 
					
						
							|  |  |  | }; | 
					
						
							|  |  |  | REGISTER_CPU_OP_CREATOR(CPUQuantizedConcatCreator, OpType_QuantizedConcat); | 
					
						
							|  |  |  | } // namespace MNN
 | 
					
						
							| 
									
										
											  
											
												- build:
	- unify schema building in core and converter;
	- add more build script for android;
	- add linux build script for python;
- ops impl:
	- add floor mod support in binary;
	- use eltwise impl in add/max/sub/mul binary for optimization;
	- remove fake double support in cast;
	- fix 5d support for concat;
	- add adjX and adjY support for batch matmul;
	- optimize conv2d back prop filter;
	- add pad mode support for conv3d;
	- fix bug in conv2d & conv depthwise with very small feature map;
	- optimize binary without broacast;
	- add data types support for gather;
	- add gather ND support;
	- use uint8 data type in gather v2;
	- add transpose support for matmul;
	- add matrix band part;
	- add dim != 4 support for padding, reshape & tensor convert;
	- add pad type support for pool3d;
	- make ops based on TensorFlow Lite quantization optional;
	- add all & any support for reduction;
	- use type in parameter as output type in reduction;
	- add int support for unary;
	- add variable weight support for conv2d;
	- fix conv2d depthwise weights initialization;
	- fix type support for transpose;
	- fix grad outputs count for  reduce grad and reshape grad;
	- fix priorbox & detection output;
	- fix metal softmax error;
- python:
	- add runSessionWithCallBackInfo interface;
	- add max nodes limit (1400) for visualization tool;
	- fix save error in python3;
	- align default dim;
- convert:
	- add extra design for optimization;
	- add more post converting optimizers;
	- add caffe v1 weights blob support;
	- add cast, unary, conv transpose support for onnx model;
	- optimize batchnorm, conv with variable weights, prelu, reshape, slice, upsample for onnx model;
	- add cos/sin/atan/tan support for unary for tensorflow model;
	- add any/all support for reduction for tensorflow model;
	- add elu, conv3d, pool3d support for tensorflow model;
	- optimize argmax, batchnorm, concat, batch to space, conv with variable weights, prelu, slice for tensorflow model;
- others:
	- fix size computer lock;
	- fix thread pool deadlock;
	- add express & parameters in express;
	- rewrite blitter chooser without static map;
	- add tests for expr;
											
										 
											2019-10-29 13:37:26 +08:00
										 |  |  | #endif
 |