MNN/source/backend/cpu/CPUSelect.cpp

98 lines
3.3 KiB
C++
Raw Normal View History

//
// CPUSelect.cpp
// MNN
//
// Created by MNN on 2019/5/22.
// Copyright © 2018 Alibaba. All rights reserved.
//
2019-12-27 22:16:57 +08:00
#include "backend/cpu/CPUSelect.hpp"
namespace MNN {
2020-07-04 01:21:30 +08:00
static void ApplySelectAtAxis(int axis, int dimensions, const int* select,
const float* input0, const float* input1, float* output,
const std::vector<int>& select_shape,
const std::vector<int>& input_shape,
const std::vector<int>& select_stride,
const std::vector<int>& input_stride) {
if (axis >= dimensions) {
if (*select) {
*output = *input0;
} else {
*output = *input1;
}
return;
}
for (int i = 0; i < input_shape[axis]; ++i) {
ApplySelectAtAxis(axis + 1, dimensions, select, input0, input1,
output, select_shape, input_shape, select_stride, input_stride);
input0 += input_stride[axis];
input1 += input_stride[axis];
output += input_stride[axis];
if (select_shape[axis] == input_shape[axis]) {
select += select_stride[axis];
}
}
}
ErrorCode CPUSelect::onExecute(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs) {
2020-07-04 01:21:30 +08:00
int dimensions = inputs[1]->dimensions();
auto select = inputs[0];
2020-07-04 01:21:30 +08:00
MNN_ASSERT(inputs.size() == 3);
MNN_ASSERT(dimensions == inputs[2]->dimensions());
for (int i = 0; i < dimensions; ++i) {
MNN_ASSERT(inputs[1]->length(i) == inputs[2]->length(i));
}
MNN_ASSERT(select->dimensions() <= dimensions);
for (int i = 0; i < select->dimensions(); ++i) {
MNN_ASSERT(select->length(i) == 1 ||
select->length(i) == inputs[1]->length(i));
}
auto outputPtr = outputs[0]->host<float>();
auto input0Ptr = inputs[1]->host<float>();
auto input1Ptr = inputs[2]->host<float>();
auto selectPtr = select->host<int32_t>();
2020-07-04 01:21:30 +08:00
std::vector<int> select_shape(dimensions);
std::vector<int> input_shape(dimensions);
std::vector<int> select_stride(dimensions);
std::vector<int> input_stride(dimensions);
for (int i = 0; i < dimensions; ++i) {
if (i < select->dimensions()) {
select_shape[i] = select->length(i);
} else {
select_shape[i] = 1;
}
input_shape[i] = inputs[1]->length(i);
}
for (int i = dimensions - 1; i >= 0; --i) {
if (i == dimensions - 1) {
select_stride[i] = 1;
input_stride[i] = 1;
} else {
2020-07-04 01:21:30 +08:00
select_stride[i] = select_shape[i + 1] * select_stride[i + 1];
input_stride[i] = input_shape[i + 1] * input_stride[i + 1];
}
}
2020-07-04 01:21:30 +08:00
ApplySelectAtAxis(0, dimensions, selectPtr, input0Ptr, input1Ptr, outputPtr,
select_shape, input_shape, select_stride, input_stride);
return NO_ERROR;
}
2020-07-04 01:21:30 +08:00
class CPUSelectCreator : public CPUBackend::Creator {
public:
virtual Execution *onCreate(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs,
const MNN::Op *op, Backend *backend) const {
return new CPUSelect(backend);
}
};
REGISTER_CPU_OP_CREATOR(CPUSelectCreator, OpType_Select);
} // namespace MNN