MNN/source/backend/cpu/compute/Convolution1x1Strassen.cpp

253 lines
12 KiB
C++
Raw Normal View History

2019-04-17 10:49:11 +08:00
//
// Convolution1x1Strassen.cpp
// MNN
//
// Created by MNN on 2019/02/12.
// Copyright © 2018, Alibaba Group Holding Limited
//
2020-02-26 09:57:17 +08:00
#include "Convolution1x1Strassen.hpp"
2019-04-17 10:49:11 +08:00
#include <string.h>
2019-12-27 22:16:57 +08:00
#include "core/BufferAllocator.hpp"
#include "backend/cpu/CPUBackend.hpp"
2020-02-26 09:57:17 +08:00
#include "CommonOptFunction.h"
2019-12-27 22:16:57 +08:00
#include "core/Concurrency.h"
2020-02-26 09:57:17 +08:00
#include "ConvOpt.h"
2019-12-27 22:16:57 +08:00
#include "core/Macro.h"
2019-04-17 10:49:11 +08:00
namespace MNN {
2020-07-04 01:21:30 +08:00
Convolution1x1Strassen::Convolution1x1Strassen(const Convolution2DCommon *common, Backend *b, const float *originWeight,
size_t originWeightSize, const float *bias, size_t biasSize)
: CPUConvolution(common, b) {
2019-04-17 10:49:11 +08:00
auto outputCount = (int)biasSize;
auto mSrcCount = (int)originWeightSize / outputCount;
int ePack, lPack, hPack;
MNNGetMatMulPackMode(&ePack, &lPack, &hPack);
2020-07-04 01:21:30 +08:00
mWeight.reset(Tensor::createDevice<float>(std::vector<int>{UP_DIV(outputCount, hPack), mSrcCount, hPack}));
mValid = b->onAcquireBuffer(mWeight.get(), Backend::STATIC);
2019-04-17 10:49:11 +08:00
if (!mValid) {
MNN_ERROR("Not Enough Memory\n");
return;
}
2020-07-04 01:21:30 +08:00
::memset(mWeight->host<float>(), 0, mWeight->size());
MNNPackForMatMul_B(mWeight->host<float>(), originWeight, outputCount, mSrcCount, true);
2020-07-04 01:21:30 +08:00
2019-04-17 10:49:11 +08:00
mBias.reset(Tensor::createDevice<float>(std::vector<int>{UP_DIV(outputCount, 4), 4}));
mValid = b->onAcquireBuffer(mBias.get(), Backend::STATIC);
if (!mValid) {
MNN_ERROR("Not Enough Memory\n");
return;
}
::memset(mBias->host<float>(), 0, mBias->size());
::memcpy(mBias->host<float>(), bias, biasSize * sizeof(float));
}
2019-04-17 10:49:11 +08:00
Convolution1x1Strassen::~Convolution1x1Strassen() {
if (nullptr != mWeight) {
backend()->onReleaseBuffer(mWeight.get(), Backend::STATIC);
}
backend()->onReleaseBuffer(mBias.get(), Backend::STATIC);
}
ErrorCode Convolution1x1Strassen::onResize(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs) {
CPUConvolution::onResize(inputs, outputs);
int ePack, lPack, hPack;
MNNGetMatMulPackMode(&ePack, &lPack, &hPack);
2020-07-04 01:21:30 +08:00
auto CONVOLUTION_TILED_NUMBER = ePack;
auto input = inputs[0];
auto output = outputs[0];
int numberThread = ((CPUBackend *)backend())->threadNumber();
auto ic = input->channel();
auto icC4 = UP_DIV(ic, 4);
auto ocC4 = UP_DIV(output->channel(), 4);
auto outputPlane = output->height() * output->width();
mUnits.clear();
auto inputPtr = input->host<float>();
auto outputPtr = output->host<float>();
mTempOutputBatch.reset();
mTempInputBatch.reset();
std::shared_ptr<char> __autoFunction;
auto padY = mPadY;
auto padX = mPadX;
auto strideX = mCommon->strideX();
auto strideY = mCommon->strideY();
mNeedPretreat = input->batch() > 1 || (!(padX == 0 && padY == 0 && strideY == 1 && strideX == 1));
auto postParameters = getPostParameters();
if (mNeedPretreat) {
mTempInputBatch.reset(Tensor::createDevice<float>(std::vector<int>{icC4, outputPlane, 4}));
mTempOutputBatch.reset(Tensor::createDevice<float>(std::vector<int>{ocC4, outputPlane, 4}));
bool success = backend()->onAcquireBuffer(mTempOutputBatch.get(), Backend::DYNAMIC);
success = success && backend()->onAcquireBuffer(mTempInputBatch.get(), Backend::DYNAMIC);
if (!success) {
return OUT_OF_MEMORY;
}
inputPtr = mTempInputBatch->host<float>();
outputPtr = mTempOutputBatch->host<float>();
__autoFunction = std::shared_ptr<char>(nullptr, [this](void *ptr) {
backend()->onReleaseBuffer(mTempOutputBatch.get(), Backend::DYNAMIC);
backend()->onReleaseBuffer(mTempInputBatch.get(), Backend::DYNAMIC);
});
auto ow = output->width();
auto oh = output->height();
auto iw = input->width();
auto ih = input->height();
if (padX == 0 && padY == 0 && strideY == 1 && strideX == 1) {
mPretreatFunction = [outputPlane, icC4](const float *srcBatch, float *dstBatch) {
::memcpy(dstBatch, srcBatch, outputPlane * sizeof(float) * 4 * icC4);
};
} else if (strideY == 1 && strideX == 1) {
mPretreatFunction = [outputPlane, padY, padX, ow, oh, iw, ih, icC4](const float *srcBatch,
float *dstBatch) {
::memset(dstBatch, 0, outputPlane * sizeof(float) * 4 * icC4);
for (int z = 0; z < icC4; ++z) {
auto srcZ = srcBatch + z * iw * ih * 4;
auto dstZ = dstBatch + z * ow * oh * 4;
for (int y = 0; y < ih; ++y) {
auto src = srcZ + iw * y * 4;
auto dst = dstZ + (ow * (y + padY) + padX) * 4;
::memcpy(dst, src, iw * 4 * sizeof(float));
}
}
};
} else {
int oyStart, oyEnd, oxStart, oxEnd;
for (oyStart = 0; oyStart * strideY - padY < 0; ++oyStart) {
// do nothing
}
for (oyEnd = oh - 1; oyEnd * strideY - padY >= ih; --oyEnd) {
// do nothing
}
for (oxStart = 0; oxStart * strideX - padX < 0; ++oxStart) {
// do nothing
}
for (oxEnd = ow - 1; oxEnd * strideX - padX >= iw; --oxEnd) {
// do nothing
}
int oyCount = oyEnd - oyStart + 1;
int oxCount = oxEnd - oxStart + 1;
mPretreatFunction = [outputPlane, padY, padX, strideX, strideY, ow, oh, iw, ih, icC4, oxStart, oyStart,
oxCount, oyCount](const float *srcBatch, float *dstBatch) {
::memset(dstBatch, 0, outputPlane * sizeof(float) * 4 * icC4);
auto srcStride = strideX * 4;
auto dstStride = 4;
int syStart = oyStart * strideY - padY;
int sxStart = oxStart * strideX - padX;
for (int z = 0; z < icC4; ++z) {
auto srcZ = srcBatch + (z * iw * ih + syStart * iw + sxStart) * 4;
auto dstZ = dstBatch + (z * ow * oh + oyStart * ow + oxStart) * 4;
for (int y = 0; y < oyCount; ++y) {
auto dstY = dstZ + y * ow * 4;
auto srcY = srcZ + y * strideY * iw * 4;
MNNCopyC4WithStride(srcY, dstY, srcStride, dstStride, oxCount);
}
}
};
}
}
auto memoryPool = ((CPUBackend *)backend())->getBufferAllocator();
memoryPool->barrierBegin();
std::shared_ptr<void> __a(nullptr, [memoryPool](void *) { memoryPool->barrierEnd(); });
int maxDepth = 5;
if (outputPlane > CONVOLUTION_TILED_NUMBER * 8 * numberThread && outputPlane > ocC4) {
// Divide in plane, in this case the divide equal numberThread
int divideStep = UP_DIV(outputPlane, numberThread);
mUnits.resize(numberThread);
for (int i = 0; i < numberThread; ++i) {
int planeStart = i * divideStep;
int planeEnd = std::min(planeStart + divideStep, outputPlane);
int planeSize = planeEnd - planeStart;
Unit &unit = mUnits[i];
if (planeSize <= 0) {
unit.mValid = false;
continue;
}
unit.mStracssenComputor.reset(new StrassenMatrixComputor(backend(), false, maxDepth));
unit.mTempInput.reset(
Tensor::create<float>(std::vector<int>{icC4, planeSize, 4}, inputPtr + 4 * planeStart));
unit.mTempInput->setStride(0, outputPlane * 4);
unit.mTempOutput.reset(
Tensor::create<float>(std::vector<int>{ocC4, planeSize, 4}, outputPtr + 4 * planeStart));
unit.mTempOutput->setStride(0, outputPlane * 4);
unit.mTempInputVector = std::vector<Tensor *>{unit.mTempInput.get(), mWeight.get(), mBias.get()};
unit.mTempOutputVector = std::vector<Tensor *>{unit.mTempOutput.get()};
memoryPool->beginGroup();
std::shared_ptr<void> __b(nullptr, [memoryPool](void *) { memoryPool->endGroup(); });
unit.mStracssenComputor->onReset();
auto code = unit.mStracssenComputor->onEncode(unit.mTempInputVector, unit.mTempOutputVector, postParameters);
if (NO_ERROR != code) {
return code;
}
}
} else {
// Divide in ocC4
auto hDiv = MNNGetC4DivNumber(hPack);
auto ocDiv = UP_DIV(ocC4, hDiv);
numberThread = std::min(numberThread, ocDiv);
int divideStep = (ocDiv / numberThread) * hDiv;
mUnits.resize(numberThread);
for (int i = 0; i < numberThread; ++i) {
int ocStart = i * divideStep;
int ocSize = divideStep;
if (i == numberThread - 1) {
ocSize = ocC4 - i * divideStep;
}
Unit &unit = mUnits[i];
if (ocSize <= 0) {
unit.mValid = false;
continue;
}
auto ocStartWeight = (ocStart * 4) / hPack;
auto ocWeightSize = std::min(UP_DIV((ocSize * 4), hPack), mWeight->length(0) - ocStartWeight);
unit.mStracssenComputor.reset(new StrassenMatrixComputor(backend(), false, maxDepth));
unit.mTempInput.reset(Tensor::create<float>(std::vector<int>{icC4, outputPlane, 4}, inputPtr));
unit.mTempBias.reset(Tensor::create<float>({ocSize, 1, 4}, mBias->host<float>() + 4 * ocStart));
unit.mTempOutput.reset(
Tensor::create<float>(std::vector<int>{ocSize, outputPlane, 4}, outputPtr + 4 * outputPlane * ocStart));
unit.mTempWeight.reset(Tensor::create<float>(std::vector<int>{ocWeightSize, ic, hPack},
mWeight->host<float>() + hPack * ic * ocStartWeight));
unit.mTempInputVector = std::vector<Tensor *>{unit.mTempInput.get(), unit.mTempWeight.get(), unit.mTempBias.get()};
unit.mTempOutputVector = std::vector<Tensor *>{unit.mTempOutput.get()};
memoryPool->beginGroup();
std::shared_ptr<void> __b(nullptr, [memoryPool](void *) { memoryPool->endGroup(); });
unit.mStracssenComputor->onReset();
auto code = unit.mStracssenComputor->onEncode(unit.mTempInputVector, unit.mTempOutputVector, postParameters);
if (NO_ERROR != code) {
return code;
}
}
2019-04-17 10:49:11 +08:00
}
return NO_ERROR;
}
ErrorCode Convolution1x1Strassen::onExecute(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs) {
2020-07-04 01:21:30 +08:00
auto size = mUnits.size();
2019-04-17 10:49:11 +08:00
auto input = inputs[0];
auto output = outputs[0];
2020-07-04 01:21:30 +08:00
if (!mNeedPretreat) {
MNN_CONCURRENCY_BEGIN(tId, size) {
auto &unit = mUnits[tId];
if (unit.mValid) {
unit.mStracssenComputor->onExecute();
}
}
MNN_CONCURRENCY_END();
2020-07-04 01:21:30 +08:00
return NO_ERROR;
}
for (int batchIndex = 0; batchIndex < input->batch(); ++batchIndex) {
mPretreatFunction(input->host<float>() + batchIndex * input->stride(0), mTempInputBatch->host<float>());
MNN_CONCURRENCY_BEGIN(tId, size) {
auto &unit = mUnits[tId];
if (unit.mValid) {
unit.mStracssenComputor->onExecute();
}
}
MNN_CONCURRENCY_END();
2020-07-04 01:21:30 +08:00
::memcpy(output->host<float>() + batchIndex * output->stride(0), mTempOutputBatch->host<float>(),
output->stride(0) * sizeof(float));
2019-04-17 10:49:11 +08:00
}
return NO_ERROR;
}
} // namespace MNN