MNN/source/shape/ShapeTile.cpp

47 lines
1.6 KiB
C++
Raw Normal View History

2019-04-17 10:49:11 +08:00
//
// ShapeTile.cpp
// MNN
//
// Created by MNN on 2019/01/10.
// Copyright © 2018, Alibaba Group Holding Limited
//
2019-12-27 22:16:57 +08:00
#include "core/Macro.h"
#include "core/SizeComputer.hpp"
#include "core/TensorUtils.hpp"
2019-04-17 10:49:11 +08:00
namespace MNN {
class TileComputer : public SizeComputer {
public:
virtual bool onComputeSize(const MNN::Op* op, const std::vector<Tensor*>& inputs,
const std::vector<Tensor*>& outputs) const override {
MNN_ASSERT(2 == inputs.size());
MNN_ASSERT(1 == outputs.size());
auto& input = inputs[0]->buffer();
auto multiples = inputs[1];
MNN_ASSERT(multiples->getType().code == halide_type_int);
auto& output = outputs[0]->buffer();
// Expected multiples argument to be a 1-D vector of length input.dimensions
MNN_ASSERT(1 == multiples->buffer().dimensions)
MNN_ASSERT(input.dimensions == multiples->buffer().dim[0].extent);
const int inputDims = input.dimensions;
::memcpy(output.dim, input.dim, input.dimensions * sizeof(halide_dimension_t));
output.dimensions = inputDims;
output.type = input.type;
TensorUtils::getDescribe(outputs[0])->dimensionFormat = TensorUtils::getDescribe(inputs[0])->dimensionFormat;
2019-04-17 10:49:11 +08:00
for (int i = 0; i < inputDims; ++i) {
output.dim[i].extent = input.dim[i].extent * multiples->host<int32_t>()[i];
}
TensorUtils::getDescribe(outputs[0])->dimensionFormat = TensorUtils::getDescribe(inputs[0])->dimensionFormat;
2019-04-17 10:49:11 +08:00
return true;
}
};
REGISTER_SHAPE_INPUTS(TileComputer, OpType_Tile, {1});
2019-04-17 10:49:11 +08:00
} // namespace MNN