MNN/source/shape/ShapeUnpack.cpp

57 lines
1.7 KiB
C++
Raw Normal View History

2019-04-17 10:49:11 +08:00
//
// ShapeUnpack.cpp
// MNN
//
// Created by MNN on 2019/01/10.
// Copyright © 2018, Alibaba Group Holding Limited
//
2019-12-27 22:16:57 +08:00
#include "core/Macro.h"
#include "core/SizeComputer.hpp"
2019-04-17 10:49:11 +08:00
namespace MNN {
class UnpackComputer : public SizeComputer {
virtual bool onComputeSize(const MNN::Op *op, const std::vector<Tensor *> &inputs,
const std::vector<Tensor *> &outputs) const override {
if (nullptr == op || inputs.empty()) {
// Avoid crash for special model
return false;
}
2019-04-17 10:49:11 +08:00
auto unpack = op->main_as_Axis();
int axis = unpack->axis();
if (axis < 0) {
axis += inputs[0]->dimensions();
}
2019-04-17 10:49:11 +08:00
auto &input = inputs[0]->buffer();
const int inputDimensions = input.dimensions;
MNN_ASSERT(1 <= inputDimensions);
std::vector<int> outDims;
for (int i = 0; i < inputDimensions; i++) {
if (axis == i) {
continue;
}
outDims.push_back(input.dim[i].extent);
}
const int outputDimensions = inputDimensions - 1;
MNN_ASSERT(outDims.size() == outputDimensions);
for (int i = 0; i < outputs.size(); i++) {
auto &output = outputs[i]->buffer();
output.dimensions = outputDimensions;
output.type = input.type;
for (int j = 0; j < outputDimensions; j++) {
output.dim[j].extent = outDims[j];
}
TensorUtils::getDescribe(outputs[i])->dimensionFormat = TensorUtils::getDescribe(inputs[0])->dimensionFormat;
2019-04-17 10:49:11 +08:00
}
return true;
}
};
REGISTER_SHAPE(UnpackComputer, OpType_Unpack);
} // namespace MNN