- build:
- unify schema building in core and converter;
- add more build script for android;
- add linux build script for python;
- ops impl:
- add floor mod support in binary;
- use eltwise impl in add/max/sub/mul binary for optimization;
- remove fake double support in cast;
- fix 5d support for concat;
- add adjX and adjY support for batch matmul;
- optimize conv2d back prop filter;
- add pad mode support for conv3d;
- fix bug in conv2d & conv depthwise with very small feature map;
- optimize binary without broacast;
- add data types support for gather;
- add gather ND support;
- use uint8 data type in gather v2;
- add transpose support for matmul;
- add matrix band part;
- add dim != 4 support for padding, reshape & tensor convert;
- add pad type support for pool3d;
- make ops based on TensorFlow Lite quantization optional;
- add all & any support for reduction;
- use type in parameter as output type in reduction;
- add int support for unary;
- add variable weight support for conv2d;
- fix conv2d depthwise weights initialization;
- fix type support for transpose;
- fix grad outputs count for reduce grad and reshape grad;
- fix priorbox & detection output;
- fix metal softmax error;
- python:
- add runSessionWithCallBackInfo interface;
- add max nodes limit (1400) for visualization tool;
- fix save error in python3;
- align default dim;
- convert:
- add extra design for optimization;
- add more post converting optimizers;
- add caffe v1 weights blob support;
- add cast, unary, conv transpose support for onnx model;
- optimize batchnorm, conv with variable weights, prelu, reshape, slice, upsample for onnx model;
- add cos/sin/atan/tan support for unary for tensorflow model;
- add any/all support for reduction for tensorflow model;
- add elu, conv3d, pool3d support for tensorflow model;
- optimize argmax, batchnorm, concat, batch to space, conv with variable weights, prelu, slice for tensorflow model;
- others:
- fix size computer lock;
- fix thread pool deadlock;
- add express & parameters in express;
- rewrite blitter chooser without static map;
- add tests for expr;
2019-10-29 13:37:26 +08:00
|
|
|
//
|
|
|
|
// GatherTest.cpp
|
|
|
|
// MNNTests
|
|
|
|
//
|
|
|
|
// Created by MNN on 2019/09/17.
|
|
|
|
// Copyright © 2018, Alibaba Group Holding Limited
|
|
|
|
//
|
|
|
|
|
|
|
|
/*
|
|
|
|
Test Case From https://www.tensorflow.org/api_docs/cc/class/tensorflow/ops/gather-nd
|
|
|
|
*/
|
2019-12-27 22:16:57 +08:00
|
|
|
#include <MNN/expr/ExprCreator.hpp>
|
- build:
- unify schema building in core and converter;
- add more build script for android;
- add linux build script for python;
- ops impl:
- add floor mod support in binary;
- use eltwise impl in add/max/sub/mul binary for optimization;
- remove fake double support in cast;
- fix 5d support for concat;
- add adjX and adjY support for batch matmul;
- optimize conv2d back prop filter;
- add pad mode support for conv3d;
- fix bug in conv2d & conv depthwise with very small feature map;
- optimize binary without broacast;
- add data types support for gather;
- add gather ND support;
- use uint8 data type in gather v2;
- add transpose support for matmul;
- add matrix band part;
- add dim != 4 support for padding, reshape & tensor convert;
- add pad type support for pool3d;
- make ops based on TensorFlow Lite quantization optional;
- add all & any support for reduction;
- use type in parameter as output type in reduction;
- add int support for unary;
- add variable weight support for conv2d;
- fix conv2d depthwise weights initialization;
- fix type support for transpose;
- fix grad outputs count for reduce grad and reshape grad;
- fix priorbox & detection output;
- fix metal softmax error;
- python:
- add runSessionWithCallBackInfo interface;
- add max nodes limit (1400) for visualization tool;
- fix save error in python3;
- align default dim;
- convert:
- add extra design for optimization;
- add more post converting optimizers;
- add caffe v1 weights blob support;
- add cast, unary, conv transpose support for onnx model;
- optimize batchnorm, conv with variable weights, prelu, reshape, slice, upsample for onnx model;
- add cos/sin/atan/tan support for unary for tensorflow model;
- add any/all support for reduction for tensorflow model;
- add elu, conv3d, pool3d support for tensorflow model;
- optimize argmax, batchnorm, concat, batch to space, conv with variable weights, prelu, slice for tensorflow model;
- others:
- fix size computer lock;
- fix thread pool deadlock;
- add express & parameters in express;
- rewrite blitter chooser without static map;
- add tests for expr;
2019-10-29 13:37:26 +08:00
|
|
|
#include "MNNTestSuite.h"
|
|
|
|
#include "MNN_generated.h"
|
|
|
|
using namespace MNN::Express;
|
|
|
|
|
|
|
|
class GatherTest : public MNNTestCase {
|
|
|
|
public:
|
|
|
|
virtual bool run() {
|
|
|
|
std::unique_ptr<MNN::OpT> gatherOp(new MNN::OpT);
|
|
|
|
gatherOp->type = MNN::OpType_GatherND;
|
|
|
|
auto parameter = _Input({2, 2}, NHWC, halide_type_of<int32_t>());
|
|
|
|
auto indice = _Input({2, 2}, NHWC, halide_type_of<int32_t>());
|
|
|
|
auto y = Variable::create(Expr::create(gatherOp.get(), {parameter, indice}));
|
|
|
|
{
|
|
|
|
parameter->resize({2, 2});
|
|
|
|
auto ptr = parameter->writeMap<int32_t>();
|
|
|
|
ptr[0] = 7;
|
|
|
|
ptr[1] = 2;
|
|
|
|
ptr[2] = 4;
|
|
|
|
ptr[3] = 6;
|
|
|
|
}
|
|
|
|
{
|
|
|
|
auto indicePtr = indice->writeMap<int32_t>();
|
|
|
|
indicePtr[0] = 0;
|
|
|
|
indicePtr[1] = 0;
|
|
|
|
indicePtr[2] = 1;
|
|
|
|
indicePtr[3] = 1;
|
|
|
|
auto size = y->getInfo()->size;
|
|
|
|
if (size != 2) {
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
auto yPtr = y->readMap<int32_t>();
|
|
|
|
if (yPtr[0] != 7 || yPtr[1] != 6) {
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
{
|
|
|
|
indice->resize({2, 1});
|
|
|
|
auto indicePtr = indice->writeMap<int32_t>();
|
|
|
|
indicePtr[0] = 1;
|
|
|
|
indicePtr[1] = 0;
|
|
|
|
auto size = y->getInfo()->size;
|
|
|
|
if (4 != size) {
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
auto yPtr = y->readMap<int32_t>();
|
|
|
|
if (yPtr[0] != 4 || yPtr[1] != 6 || yPtr[2] != 7 || yPtr[3] != 2) {
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
{
|
|
|
|
indice->resize({1, 1});
|
|
|
|
auto indicePtr = indice->writeMap<int32_t>();
|
|
|
|
indicePtr[0] = 1;
|
|
|
|
parameter->resize({2, 2, 2});
|
|
|
|
auto parameterPtr = parameter->writeMap<int32_t>();
|
|
|
|
for (int i=0; i<parameter->getInfo()->size; ++i) {
|
|
|
|
parameterPtr[i] = i;
|
|
|
|
}
|
|
|
|
auto size = y->getInfo()->size;
|
|
|
|
if (4 != size) {
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
auto yPtr = y->readMap<int32_t>();
|
|
|
|
for (int i=0; i<size; ++i) {
|
|
|
|
if (yPtr[i] != 4 + i) {
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
};
|
|
|
|
MNNTestSuiteRegister(GatherTest, "expr/Gather");
|