2023-12-27 17:26:44 +08:00
// ConvBufLowMemoryExecution.cpp
//
// Created by MNN on 2023/10/12.
// Copyright © 2018, Alibaba Group Holding Limited
//
# ifdef MNN_LOW_MEMORY
# ifndef MNN_OPENCL_BUFFER_CLOSED
# include "ConvBufLowMemoryExecution.hpp"
// #define LOG_VERBOSE
namespace MNN {
namespace OpenCL {
// set mDequantScale mDequantOffset mNumQuantBit mFilterDataPtr from mConv2dParams
void ConvBufLowMemoryExecution : : getInfoFromOpLowMemory ( std : : shared_ptr < ConvolutionCommon : : Int8Common > & quanCommon ) {
quanCommon = ConvolutionCommon : : load ( mConv2dParams , this - > backend ( ) , false , true ) ;
if ( ( mOpenCLBackend - > getMemory ( ) = = BackendConfig : : Memory_Low ) & & ( mConv2dParams - > quanParameter ( ) ! = nullptr ) ) {
mLowMemoryFlag = true ;
} else {
MNN_ERROR ( " Conv buf low memory init error. \n " ) ;
MNN_ASSERT ( false ) ;
}
// set mNumQuantBit
if ( quanCommon - > quan - > type ( ) = = 4 ) {
mNumQuantBit = 8 ;
} else if ( quanCommon - > quan - > type ( ) = = 1 | | quanCommon - > quan - > type ( ) = = 2 ) {
mNumQuantBit = 4 ;
} else { /* More types to be supported. */ }
// src of alpha in CPU
float * dequantAlpha = quanCommon - > alpha . get ( ) ;
int numAlpha = mOutputChannel ;
// set mDequantScale mDequantOffset
int numAlphaPack = ROUND_UP ( numAlpha , 16 ) ;
int numBiasPack = ROUND_UP ( mOutputChannel , 16 ) ;
mResource - > bias . reset ( Tensor : : createDevice < float > ( { 1 , 1 , 1 , ROUND_UP ( mOutputChannel , 16 ) } ) ) ;
mResource - > dequantScale . reset ( Tensor : : createDevice < float > ( { numAlphaPack } ) ) ;
mResource - > dequantOffset . reset ( Tensor : : createDevice < float > ( { numAlphaPack } ) ) ;
mOpenCLBackend - > onAcquireBuffer ( mResource - > bias . get ( ) , Backend : : STATIC ) ;
mOpenCLBackend - > onAcquireBuffer ( mResource - > dequantScale . get ( ) , Backend : : STATIC ) ;
mOpenCLBackend - > onAcquireBuffer ( mResource - > dequantOffset . get ( ) , Backend : : STATIC ) ;
cl : : Buffer & biasBuffer = openCLBuffer ( mResource - > bias . get ( ) ) ;
cl : : Buffer & dequantScaleBuffer = openCLBuffer ( mResource - > dequantScale . get ( ) ) ;
cl : : Buffer & dequantOffsetBuffer = openCLBuffer ( mResource - > dequantOffset . get ( ) ) ;
// transfer data from src in cpu to dst in gpu
int bytes = mOpenCLBackend - > fpBytes ( ) ;
cl_int resBias , resScale , resOffset ;
auto biasPtrCL = mOpenCLBackend - > getOpenCLRuntime ( ) - > commandQueue ( ) . enqueueMapBuffer ( biasBuffer , true , CL_MAP_WRITE , 0 , numBiasPack * bytes , nullptr , nullptr , & resBias ) ;
void * dequantScaleBufferMap = mOpenCLBackend - > getOpenCLRuntime ( ) - > commandQueue ( ) . enqueueMapBuffer ( dequantScaleBuffer , true , CL_MAP_WRITE , 0 , numAlphaPack * bytes , nullptr , nullptr , & resScale ) ;
void * dequantOffsetBufferMap = mOpenCLBackend - > getOpenCLRuntime ( ) - > commandQueue ( ) . enqueueMapBuffer ( dequantOffsetBuffer , true , CL_MAP_WRITE , 0 , numAlphaPack * bytes , nullptr , nullptr , & resOffset ) ;
if ( biasPtrCL ! = nullptr & & resBias = = CL_SUCCESS ) {
: : memset ( biasPtrCL , 0 , numBiasPack * bytes ) ;
if ( nullptr ! = mConv2dParams - > bias ( ) ) {
const float * biasDataPtr = mConv2dParams - > bias ( ) - > data ( ) ;
if ( bytes = = 2 ) {
for ( int i = 0 ; i < mOutputChannel ; i + + ) {
( ( half_float : : half * ) biasPtrCL ) [ i ] = ( half_float : : half ) ( biasDataPtr [ i ] ) ;
}
} else {
: : memcpy ( biasPtrCL , biasDataPtr , mOutputChannel * sizeof ( float ) ) ;
}
}
}
: : memset ( dequantScaleBufferMap , - 1 , numAlphaPack * bytes ) ;
: : memset ( dequantOffsetBufferMap , 0 , numAlphaPack * bytes ) ;
if ( dequantScaleBufferMap ! = nullptr & & dequantOffsetBufferMap ! = nullptr & & resScale = = CL_SUCCESS & & resOffset = = CL_SUCCESS ) {
if ( bytes = = 2 ) {
if ( quanCommon - > asymmetric ) {
for ( int i = 0 ; i < numAlpha ; + + i ) {
( ( half_float : : half * ) dequantOffsetBufferMap ) [ i ] = ( half_float : : half ) dequantAlpha [ 2 * i ] ;
( ( half_float : : half * ) dequantScaleBufferMap ) [ i ] = ( half_float : : half ) dequantAlpha [ 2 * i + 1 ] ;
}
} else {
for ( int i = 0 ; i < numAlpha ; + + i ) {
( ( half_float : : half * ) dequantScaleBufferMap ) [ i ] = ( half_float : : half ) dequantAlpha [ i ] ;
( ( half_float : : half * ) dequantOffsetBufferMap ) [ i ] = 0.0f ;
}
}
} else {
if ( quanCommon - > asymmetric ) {
for ( int i = 0 ; i < numAlpha ; + + i ) {
( ( float * ) dequantOffsetBufferMap ) [ i ] = dequantAlpha [ 2 * i ] ;
( ( float * ) dequantScaleBufferMap ) [ i ] = dequantAlpha [ 2 * i + 1 ] ;
}
} else {
for ( int i = 0 ; i < numAlpha ; + + i ) {
( ( float * ) dequantScaleBufferMap ) [ i ] = dequantAlpha [ i ] ;
( ( float * ) dequantOffsetBufferMap ) [ i ] = 0.0f ;
}
}
}
} else {
MNN_ERROR ( " Map error dequantBufferMap == nullptr \n " ) ;
MNN_ASSERT ( false ) ;
}
mOpenCLBackend - > getOpenCLRuntime ( ) - > commandQueue ( ) . enqueueUnmapMemObject ( biasBuffer , biasPtrCL ) ;
mOpenCLBackend - > getOpenCLRuntime ( ) - > commandQueue ( ) . enqueueUnmapMemObject ( dequantScaleBuffer , dequantScaleBufferMap ) ;
mOpenCLBackend - > getOpenCLRuntime ( ) - > commandQueue ( ) . enqueueUnmapMemObject ( dequantOffsetBuffer , dequantOffsetBufferMap ) ;
// set mFilterDataPtr
mFilterDataPtr = ( void * ) quanCommon - > weight . get ( ) ;
}
// set mKernelBuffer for the 1x1 kernels
void ConvBufLowMemoryExecution : : set1x1WeightLowMemory ( int packCout , int packCin , void * filterDataPtr , std : : shared_ptr < ConvolutionCommon : : Int8Common > & quanCommon ) {
cl_int res ;
2024-02-29 16:21:40 +08:00
std : : shared_ptr < Tensor > filterBuffer ( Tensor : : createDevice < float > ( { ROUND_UP ( mOutputChannel , 8 ) /*Cout pack set to max 8*/ , ROUND_UP ( mInputChannel , packCin ) , mResource - > mKernelWidth , mResource - > mKernelHeight } ) ) ;
2023-12-27 17:26:44 +08:00
size_t buffer_size = filterBuffer - > usize ( ) / sizeof ( float ) ;
float * dequantAlpha = quanCommon - > alpha . get ( ) ;
// shared part for all cases
if ( mNumQuantBit = = 8 ) {
// int8 case
buffer_size * = sizeof ( int8_t ) ;
} else if ( mNumQuantBit = = 4 ) {
// int4 case
buffer_size / = 2 ;
} else { /* More types to be supported. */ }
mResource - > kernelBuffer . reset ( new cl : : Buffer ( mOpenCLBackend - > getOpenCLRuntime ( ) - > context ( ) , CL_MEM_READ_WRITE | CL_MEM_ALLOC_HOST_PTR , buffer_size ) ) ;
auto kernelBufferPtr = mOpenCLBackend - > getOpenCLRuntime ( ) - > commandQueue ( ) . enqueueMapBuffer ( * ( mResource - > kernelBuffer . get ( ) ) , true , CL_MAP_WRITE , 0 , buffer_size , nullptr , nullptr , & res ) ;
if ( kernelBufferPtr ! = nullptr & & res = = CL_SUCCESS ) {
: : memset ( kernelBufferPtr , 0 , buffer_size ) ;
2024-02-29 16:21:40 +08:00
for ( int o = 0 ; o < mOutputChannel ; o + + ) {
float zero = 0 ;
if ( quanCommon - > asymmetric ) {
zero = ( - dequantAlpha [ 2 * o + 1 ] ) / dequantAlpha [ 2 * o ] ;
}
int i = 0 ;
for ( ; i < mInputChannel ; i + + ) {
int bufferIdx = ( o / packCout ) * packCin * packCout + ( i / packCin ) * packCin * ROUND_UP ( mOutputChannel , packCout ) + ( i % packCin ) * packCout + ( o % packCout ) ; //(Ci/packCin, Co/packCout, packCin, packCout)
int filterIdx = o * mInputChannel + i ;
if ( mNumQuantBit = = 8 ) {
// int8 case
( ( int8_t * ) kernelBufferPtr ) [ bufferIdx ] = ( int8_t ) ( ( ( int8_t * ) filterDataPtr ) [ filterIdx ] ) ;
} else if ( mNumQuantBit = = 4 ) {
// int4 case
if ( bufferIdx % 2 = = 0 ) {
( ( uint8_t * ) kernelBufferPtr ) [ bufferIdx / 2 ] + = ( uint8_t ) ( ( ( ( int8_t * ) filterDataPtr ) [ filterIdx ] + 8 ) * 16 ) ;
} else {
( ( uint8_t * ) kernelBufferPtr ) [ bufferIdx / 2 ] + = ( uint8_t ) ( ( ( int8_t * ) filterDataPtr ) [ filterIdx ] + 8 ) ;
2023-12-27 17:26:44 +08:00
}
2024-02-29 16:21:40 +08:00
} else { /* More types to be supported. */ }
2023-12-27 17:26:44 +08:00
}
2024-02-29 16:21:40 +08:00
for ( ; i < ROUND_UP ( mInputChannel , 4 ) ; i + + ) {
int bufferIdx = ( o / packCout ) * packCin * packCout + ( i / packCin ) * packCin * ROUND_UP ( mOutputChannel , packCout ) + ( i % packCin ) * packCout + ( o % packCout ) ; //(Ci/packCin, Co/packCout, packCin, packCout)
if ( mNumQuantBit = = 8 ) {
// int8 case
( ( int8_t * ) kernelBufferPtr ) [ bufferIdx ] = ( int8_t ) ( zero ) ;
} else if ( mNumQuantBit = = 4 ) {
// int4 case
if ( bufferIdx % 2 = = 0 ) {
( ( uint8_t * ) kernelBufferPtr ) [ bufferIdx / 2 ] + = ( uint8_t ) ( ( zero + 8 ) * 16 ) ;
} else {
( ( uint8_t * ) kernelBufferPtr ) [ bufferIdx / 2 ] + = ( uint8_t ) ( zero + 8 ) ;
2023-12-27 17:26:44 +08:00
}
}
}
}
} else {
MNN_ERROR ( " set1x1WeightLowMemory: Map error ptrCL == nullptr \n " ) ;
MNN_ASSERT ( false ) ;
}
mOpenCLBackend - > getOpenCLRuntime ( ) - > commandQueue ( ) . enqueueUnmapMemObject ( * ( mResource - > kernelBuffer . get ( ) ) , kernelBufferPtr ) ;
}
// set mFilter for the general kernels
void ConvBufLowMemoryExecution : : setGeneralWeightLowMemory ( void * filterDataPtr , std : : shared_ptr < ConvolutionCommon : : Int8Common > & quanCommon ) {
if ( filterDataPtr ! = nullptr ) {
2024-02-29 16:21:40 +08:00
std : : vector < int > filterImageShape { ROUND_UP ( mInputChannel , 4 ) , ( UP_DIV ( mOutputChannel , 4 ) * mResource - > mKernelWidth * mResource - > mKernelHeight ) } ;
std : : shared_ptr < Tensor > filterBuffer ( Tensor : : createDevice < float > ( { mOutputChannel , ROUND_UP ( mInputChannel , 4 ) , mResource - > mKernelWidth , mResource - > mKernelHeight } ) ) ;
2023-12-27 17:26:44 +08:00
// int buffer_size = filterBuffer->elementSize();
size_t buffer_size = filterBuffer - > usize ( ) / sizeof ( float ) ;
buffer_size * = sizeof ( int8_t ) ;
cl : : Buffer filterBufferCL ( mOpenCLBackend - > getOpenCLRuntime ( ) - > context ( ) , CL_MEM_READ_WRITE | CL_MEM_ALLOC_HOST_PTR , buffer_size ) ;
filterBuffer - > buffer ( ) . device = ( uint64_t ) ( & filterBufferCL ) ;
float * dequantAlpha = quanCommon - > alpha . get ( ) ;
// map and pack data from filterDataPtr
cl_int res ;
auto ptrCL = mOpenCLBackend - > getOpenCLRuntime ( ) - > commandQueue ( ) . enqueueMapBuffer ( filterBufferCL , true , CL_MAP_WRITE , 0 , buffer_size , nullptr , nullptr , & res ) ;
if ( ptrCL ! = nullptr & & res = = CL_SUCCESS ) {
: : memset ( ptrCL , 0 , buffer_size ) ;
2024-02-29 16:21:40 +08:00
const int copy_size = mResource - > mKernelWidth * mResource - > mKernelHeight * sizeof ( int8_t ) ;
2023-12-27 17:26:44 +08:00
for ( int oc = 0 ; oc < mOutputChannel ; oc + + ) {
float zero = 0 ;
if ( quanCommon - > asymmetric ) {
zero = ( - dequantAlpha [ 2 * oc + 1 ] ) / dequantAlpha [ 2 * oc ] ;
}
int ic = 0 ;
for ( ; ic < mInputChannel ; ic + + ) {
2024-02-29 16:21:40 +08:00
: : memcpy ( ( int8_t * ) ptrCL + ( oc * ROUND_UP ( mInputChannel , 4 ) + ic ) * mResource - > mKernelWidth * mResource - > mKernelHeight , ( ( int8_t * ) filterDataPtr ) + ( oc * mInputChannel + ic ) * mResource - > mKernelWidth * mResource - > mKernelHeight , copy_size ) ;
2023-12-27 17:26:44 +08:00
}
for ( ; ic < ROUND_UP ( mInputChannel , 4 ) ; ic + + ) {
2024-02-29 16:21:40 +08:00
( ( int8_t * ) ptrCL ) [ ( oc * ROUND_UP ( mInputChannel , 4 ) + ic ) * mResource - > mKernelWidth * mResource - > mKernelHeight ] = ( int8_t ) ( zero ) ;
2023-12-27 17:26:44 +08:00
}
}
} else {
MNN_ERROR ( " setGeneralWeightLowMemory: Map error ptrCL == nullptr \n " ) ;
}
mOpenCLBackend - > getOpenCLRuntime ( ) - > commandQueue ( ) . enqueueUnmapMemObject ( filterBufferCL , ptrCL ) ;
// convert to NC4HW4
if ( mNumQuantBit = = 8 ) {
// ROUND_UP(IC, 4), UP_DIV(OC, 4) * mKernelWidth * mKernelHeight
mResource - > filter . reset ( Tensor : : createDevice < int8_t > ( { 1 , filterImageShape [ 1 ] , 1 , 4 * filterImageShape [ 0 ] } ) ) ;
mOpenCLBackend - > onAcquireBuffer ( mResource - > filter . get ( ) , Backend : : STATIC ) ;
MNN : : OpenCL : : BufferConvertor bufferConvertor { mOpenCLBackend - > getOpenCLRuntime ( ) } ;
// filterBuffer shape: {OC, ROUND_UP(IC, 4), mKernelWidth, mKernelHeight}
bufferConvertor . convertToNC4HW4Buffer ( filterBuffer . get ( ) , MNN : : OpenCL : : CONV2D_FILTER , mResource - > filter . get ( ) , false , true , mLowMemoryFlag , mNumQuantBit ) ;
} else if ( mNumQuantBit = = 4 ) {
// ROUND_UP(IC, 4), UP_DIV(OC, 4) * mKernelWidth * mKernelHeight
// For int4 case, data stored in mFilter should be uint8_t,
// while "Tensor::createDevice<uint8_t>" occupies more memory than "Tensor::createDevice<int8_t>".
// Therefore, we use "Tensor::createDevice<int8_t>" currently, leaving "Tensor::createDevice<uint8_t>" to be supported.
mResource - > filter . reset ( Tensor : : createDevice < int8_t > ( { 1 , filterImageShape [ 1 ] , 1 , 2 * filterImageShape [ 0 ] } ) ) ;
mOpenCLBackend - > onAcquireBuffer ( mResource - > filter . get ( ) , Backend : : STATIC ) ;
MNN : : OpenCL : : BufferConvertor bufferConvertor { mOpenCLBackend - > getOpenCLRuntime ( ) } ;
// filterBuffer shape: {OC, ROUND_UP(IC, 4), mKernelWidth, mKernelHeight}
bufferConvertor . convertToNC4HW4Buffer ( filterBuffer . get ( ) , MNN : : OpenCL : : CONV2D_FILTER , mResource - > filter . get ( ) , false , true , mLowMemoryFlag , mNumQuantBit ) ;
} else { /* More types to be supported. */ }
} else {
MNN_ERROR ( " GetConvParams Error: filterDataPtr == nullptr. \n " ) ;
MNN_ASSERT ( false ) ;
}
}
// select the fastest kernel for the 1x1 cases by tuning
void ConvBufLowMemoryExecution : : tune1x1CaseLowMemory ( Tensor * input , Tensor * output ) {
std : : vector < int > inputShape = tensorShapeFormat ( input ) ;
std : : vector < int > outputShape = tensorShapeFormat ( output ) ;
auto runTime = ( ( OpenCLBackend * ) backend ( ) ) - > getOpenCLRuntime ( ) ;
mOpenCLBackend - > startRecord ( mRecording ) ;
const int height = outputShape . at ( 1 ) ;
const int width = outputShape . at ( 2 ) ;
const int outChannel = outputShape . at ( 3 ) ;
const int inputHeight = inputShape . at ( 1 ) ;
const int inputWidth = inputShape . at ( 2 ) ;
const int inputChannels = inputShape . at ( 3 ) ;
const int inputChannelBlocks = UP_DIV ( inputChannels , 4 ) ;
2024-02-29 16:21:40 +08:00
std : : string info = std : : to_string ( inputChannels ) + " _ " + std : : to_string ( mResource - > mKernelHeight ) + " _ " + std : : to_string ( mResource - > mKernelWidth ) + " _ " + std : : to_string ( mResource - > mStrides [ 0 ] ) + " _ " + std : : to_string ( mResource - > mStrides [ 1 ] ) + " _ " + std : : to_string ( mResource - > mDilations [ 0 ] ) + " _ " + std : : to_string ( mResource - > mDilations [ 1 ] ) ;
2023-12-27 17:26:44 +08:00
// {"conv_2d_1x1_c4h1w4", "conv_2d_1x1_c4h1w2", "conv_2d_1x1_c4h1w1", "conv_2d_1x1_c8h1w4"};
const int total_kernel = 5 ;
std : : string kernelName [ total_kernel ] = { " conv_2d_1x1_c4h1w4 " , " conv_2d_1x1_c4h1w2 " , " conv_2d_1x1_c4h1w1 " , " conv_2d_1x1_c8h1w4 " , " conv_2d_1x1_c8h1w2 " } ;
int itemC [ total_kernel ] = { 4 , 4 , 4 , 8 , 8 } ;
int itemW [ total_kernel ] = { 4 , 2 , 1 , 4 , 2 } ;
int actual_kernel = total_kernel ;
if ( mOpenCLBackend - > getOpenCLRuntime ( ) - > getCLTuneLevel ( ) = = Normal ) {
actual_kernel = 2 ;
kernelName [ 0 ] = " conv_2d_1x1_c4h1w1 " ;
itemC [ 0 ] = 4 ;
itemW [ 0 ] = 1 ;
kernelName [ 1 ] = " conv_2d_1x1_c8h1w2 " ;
itemC [ 1 ] = 8 ;
itemW [ 1 ] = 2 ;
} else if ( mOpenCLBackend - > getOpenCLRuntime ( ) - > getCLTuneLevel ( ) = = Fast | | mOpenCLBackend - > getOpenCLRuntime ( ) - > getCLTuneLevel ( ) = = None ) {
actual_kernel = 1 ;
kernelName [ 0 ] = " conv_2d_1x1_c4h1w1 " ;
itemC [ 0 ] = 4 ;
itemW [ 0 ] = 1 ;
}
cl : : Kernel kernel [ total_kernel ] ;
std : : vector < uint32_t > globalWorkSize [ total_kernel ] ;
std : : vector < uint32_t > localWorkSize [ total_kernel ] ;
std : : pair < int , int > min_cost ( INT_MAX , 0 ) ; //(min_time, min_index)
for ( int knl_idx = 0 ; knl_idx < actual_kernel ; knl_idx + + ) {
std : : set < std : : string > buildOption = mResource - > buildOptions ;
if ( outputShape . at ( 3 ) % itemC [ knl_idx ] ! = 0 ) {
buildOption . emplace ( " -DCHANNEL_LEAVE " ) ;
}
if ( ( outputShape . at ( 2 ) % itemW [ knl_idx ] ) ! = 0 ) {
buildOption . emplace ( " -DBLOCK_LEAVE " ) ;
}
kernel [ knl_idx ] = mOpenCLBackend - > getOpenCLRuntime ( ) - > buildKernel ( " conv_2d_buf " , kernelName [ knl_idx ] , buildOption ) ;
uint32_t maxWorkGroupSize = static_cast < uint32_t > ( mOpenCLBackend - > getOpenCLRuntime ( ) - > getMaxWorkGroupSize ( kernel [ knl_idx ] ) ) ;
uint32_t idx = 0 ;
cl_int ret = CL_SUCCESS ;
globalWorkSize [ knl_idx ] = { static_cast < uint32_t > ( UP_DIV ( outputShape . at ( 3 ) , itemC [ knl_idx ] ) * UP_DIV ( outputShape . at ( 2 ) , itemW [ knl_idx ] ) ) , static_cast < uint32_t > ( outputShape . at ( 0 ) * outputShape . at ( 1 ) ) } ;
ret | = kernel [ knl_idx ] . setArg ( idx + + , globalWorkSize [ knl_idx ] [ 0 ] ) ;
ret | = kernel [ knl_idx ] . setArg ( idx + + , globalWorkSize [ knl_idx ] [ 1 ] ) ;
ret | = kernel [ knl_idx ] . setArg ( idx + + , UP_DIV ( width , itemW [ knl_idx ] ) ) ;
ret | = kernel [ knl_idx ] . setArg ( idx + + , openCLBuffer ( input ) ) ;
ret | = kernel [ knl_idx ] . setArg ( idx + + , * mResource - > kernelBuffer . get ( ) ) ;
ret | = kernel [ knl_idx ] . setArg ( idx + + , openCLBuffer ( mResource - > dequantScale . get ( ) ) ) ;
ret | = kernel [ knl_idx ] . setArg ( idx + + , openCLBuffer ( mResource - > dequantOffset . get ( ) ) ) ;
ret | = kernel [ knl_idx ] . setArg ( idx + + , openCLBuffer ( mResource - > bias . get ( ) ) ) ;
ret | = kernel [ knl_idx ] . setArg ( idx + + , openCLBuffer ( output ) ) ;
ret | = kernel [ knl_idx ] . setArg ( idx + + , static_cast < int > ( inputChannelBlocks ) ) ;
ret | = kernel [ knl_idx ] . setArg ( idx + + , height ) ;
ret | = kernel [ knl_idx ] . setArg ( idx + + , width ) ;
ret | = kernel [ knl_idx ] . setArg ( idx + + , UP_DIV ( outChannel , 4 ) ) ;
MNN_CHECK_CL_SUCCESS ( ret , " setArg Conv1x1BufLowMemory Kernel Select " ) ;
std : : pair < std : : vector < uint32_t > , int > retTune ;
retTune = gws2dLwsTune ( kernel [ knl_idx ] , globalWorkSize [ knl_idx ] , kernelName [ knl_idx ] , maxWorkGroupSize ) ;
//printf("cov1x1 %d, %d\n", knl_idx, retTune.second);
if ( min_cost . first > retTune . second ) {
min_cost . first = retTune . second ;
min_cost . second = knl_idx ;
mLocalWorkSize = { retTune . first [ 0 ] , retTune . first [ 1 ] } ;
}
}
std : : shared_ptr < ConvolutionCommon : : Int8Common > quanCommon ;
int min_index = min_cost . second ;
mGlobalWorkSize = { globalWorkSize [ min_index ] [ 0 ] , globalWorkSize [ min_index ] [ 1 ] } ;
std : : set < std : : string > buildOption = mResource - > buildOptions ;
if ( outputShape . at ( 3 ) % itemC [ min_index ] ! = 0 ) {
buildOption . emplace ( " -DCHANNEL_LEAVE " ) ;
}
if ( ( outputShape . at ( 2 ) % itemW [ min_index ] ) ! = 0 ) {
buildOption . emplace ( " -DBLOCK_LEAVE " ) ;
}
mKernel = mOpenCLBackend - > getOpenCLRuntime ( ) - > buildKernel ( " conv_2d_buf " , kernelName [ min_index ] , buildOption ) ;
// MNN_PRINT("Kernel is %d.\n", min_index);
uint32_t idx = 0 ;
cl_int ret = CL_SUCCESS ;
ret | = mKernel . setArg ( idx + + , mGlobalWorkSize [ 0 ] ) ;
ret | = mKernel . setArg ( idx + + , mGlobalWorkSize [ 1 ] ) ;
ret | = mKernel . setArg ( idx + + , UP_DIV ( width , itemW [ min_index ] ) ) ;
ret | = mKernel . setArg ( idx + + , openCLBuffer ( input ) ) ;
ret | = mKernel . setArg ( idx + + , * mResource - > kernelBuffer . get ( ) ) ;
ret | = mKernel . setArg ( idx + + , openCLBuffer ( mResource - > dequantScale . get ( ) ) ) ;
ret | = mKernel . setArg ( idx + + , openCLBuffer ( mResource - > dequantOffset . get ( ) ) ) ;
ret | = mKernel . setArg ( idx + + , openCLBuffer ( mResource - > bias . get ( ) ) ) ;
ret | = mKernel . setArg ( idx + + , openCLBuffer ( output ) ) ;
ret | = mKernel . setArg ( idx + + , static_cast < int > ( inputChannelBlocks ) ) ;
ret | = mKernel . setArg ( idx + + , height ) ;
ret | = mKernel . setArg ( idx + + , width ) ;
ret | = mKernel . setArg ( idx + + , UP_DIV ( outChannel , 4 ) ) ;
MNN_CHECK_CL_SUCCESS ( ret , " setArg Conv1x1BufLowMemory " ) ;
mOpenCLBackend - > recordKernel2d ( mKernel , mGlobalWorkSize , mLocalWorkSize ) ;
mOpenCLBackend - > endRecord ( mRecording ) ;
return ;
}
// select the fastest kernel for the general cases by tuning
void ConvBufLowMemoryExecution : : tuneGeneralCaseLowMemory ( Tensor * input , Tensor * output ) {
std : : vector < int > inputShape = tensorShapeFormat ( input ) ;
std : : vector < int > outputShape = tensorShapeFormat ( output ) ;
auto runTime = ( ( OpenCLBackend * ) backend ( ) ) - > getOpenCLRuntime ( ) ;
mOpenCLBackend - > startRecord ( mRecording ) ;
const int height = outputShape . at ( 1 ) ;
const int width = outputShape . at ( 2 ) ;
const int outChannel = outputShape . at ( 3 ) ;
const int inputHeight = inputShape . at ( 1 ) ;
const int inputWidth = inputShape . at ( 2 ) ;
const int inputChannels = inputShape . at ( 3 ) ;
const int inputChannelBlocks = UP_DIV ( inputChannels , 4 ) ;
2024-02-29 16:21:40 +08:00
std : : string info = std : : to_string ( inputChannels ) + " _ " + std : : to_string ( mResource - > mKernelHeight ) + " _ " + std : : to_string ( mResource - > mKernelWidth ) + " _ " + std : : to_string ( mResource - > mStrides [ 0 ] ) + " _ " + std : : to_string ( mResource - > mStrides [ 1 ] ) + " _ " + std : : to_string ( mResource - > mDilations [ 0 ] ) + " _ " + std : : to_string ( mResource - > mDilations [ 1 ] ) ;
2023-12-27 17:26:44 +08:00
int inputImageShape [ 2 ] = { inputHeight , inputWidth } ;
int outputImageShape [ 2 ] = { height , width } ;
2024-02-29 16:21:40 +08:00
int kernelShape [ 2 ] = { mResource - > mKernelHeight , mResource - > mKernelWidth } ;
int strideShape [ 2 ] = { mResource - > mStrides [ 0 ] , mResource - > mStrides [ 1 ] } ;
2023-12-27 17:26:44 +08:00
int paddingShape [ 2 ] = { mPaddings [ 0 ] , mPaddings [ 1 ] } ;
2024-02-29 16:21:40 +08:00
int dilationShape [ 2 ] = { mResource - > mDilations [ 0 ] , mResource - > mDilations [ 1 ] } ;
2023-12-27 17:26:44 +08:00
// {"conv_2d_c4h1w2", "conv_2d_c4h1w1", "conv_2d_c8h1w1", "conv_2d_c4h1w4", "conv_2d_c8h2w1", "conv_2d_c4h4w1"};
const int total_kernel = 7 ;
std : : string kernelName [ total_kernel ] = { " conv_2d_c4h1w1 " , " conv_2d_c4h1w2 " , " conv_2d_c4h4w1 " , " conv_2d_c8h2w1 " , " conv_2d_c8h4w1 " , " conv_2d_c4h1w4 " , " conv_2d_c8h1w4 " } ;
int itemC [ total_kernel ] = { 4 , 4 , 4 , 8 , 8 , 4 , 8 } ;
int itemH [ total_kernel ] = { 1 , 1 , 4 , 2 , 4 , 1 , 1 } ;
int itemW [ total_kernel ] = { 1 , 2 , 1 , 1 , 1 , 4 , 4 } ;
int actual_kernel = total_kernel ;
cl : : Kernel kernel [ total_kernel ] ;
std : : vector < uint32_t > globalWorkSize [ total_kernel ] ;
std : : vector < uint32_t > localWorkSize [ total_kernel ] ;
std : : pair < int , int > min_cost ( INT_MAX , 0 ) ; //(min_time, min_index)
// MNN_PRINT("Checking kernel %d.\n", knlCheck);
for ( int knl_idx = 0 ; knl_idx < actual_kernel ; knl_idx + + ) {
std : : set < std : : string > buildOption = mResource - > buildOptions ;
if ( outputShape . at ( 3 ) % itemC [ knl_idx ] ! = 0 ) {
buildOption . emplace ( " -DCHANNEL_LEAVE " ) ;
}
if ( ( outputShape . at ( 2 ) % itemW [ knl_idx ] ) ! = 0 | | ( outputShape . at ( 1 ) % itemH [ knl_idx ] ) ! = 0 ) {
buildOption . emplace ( " -DBLOCK_LEAVE " ) ;
}
kernel [ knl_idx ] = mOpenCLBackend - > getOpenCLRuntime ( ) - > buildKernel ( " conv_2d_buf " , kernelName [ knl_idx ] , buildOption ) ;
uint32_t maxWorkGroupSize = static_cast < uint32_t > ( mOpenCLBackend - > getOpenCLRuntime ( ) - > getMaxWorkGroupSize ( kernel [ knl_idx ] ) ) ;
globalWorkSize [ knl_idx ] = { static_cast < uint32_t > ( UP_DIV ( outputShape . at ( 3 ) , itemC [ knl_idx ] ) * UP_DIV ( outputShape . at ( 2 ) , itemW [ knl_idx ] ) ) , static_cast < uint32_t > ( outputShape . at ( 0 ) * UP_DIV ( outputShape . at ( 1 ) , itemH [ knl_idx ] ) ) } ;
uint32_t idx = 0 ;
cl_int ret = CL_SUCCESS ;
ret | = kernel [ knl_idx ] . setArg ( idx + + , globalWorkSize [ knl_idx ] [ 0 ] ) ;
ret | = kernel [ knl_idx ] . setArg ( idx + + , globalWorkSize [ knl_idx ] [ 1 ] ) ;
ret | = kernel [ knl_idx ] . setArg ( idx + + , openCLBuffer ( input ) ) ;
ret | = kernel [ knl_idx ] . setArg ( idx + + , openCLBuffer ( mResource - > filter . get ( ) ) ) ;
ret | = kernel [ knl_idx ] . setArg ( idx + + , openCLBuffer ( mResource - > dequantScale . get ( ) ) ) ;
ret | = kernel [ knl_idx ] . setArg ( idx + + , openCLBuffer ( mResource - > dequantOffset . get ( ) ) ) ;
ret | = kernel [ knl_idx ] . setArg ( idx + + , openCLBuffer ( mResource - > bias . get ( ) ) ) ;
ret | = kernel [ knl_idx ] . setArg ( idx + + , openCLBuffer ( output ) ) ;
ret | = kernel [ knl_idx ] . setArg ( idx + + , sizeof ( inputImageShape ) , inputImageShape ) ;
ret | = kernel [ knl_idx ] . setArg ( idx + + , inputChannels ) ;
ret | = kernel [ knl_idx ] . setArg ( idx + + , inputChannelBlocks ) ;
ret | = kernel [ knl_idx ] . setArg ( idx + + , sizeof ( outputImageShape ) , outputImageShape ) ;
ret | = kernel [ knl_idx ] . setArg ( idx + + , sizeof ( kernelShape ) , kernelShape ) ;
ret | = kernel [ knl_idx ] . setArg ( idx + + , sizeof ( strideShape ) , strideShape ) ;
ret | = kernel [ knl_idx ] . setArg ( idx + + , sizeof ( paddingShape ) , paddingShape ) ;
ret | = kernel [ knl_idx ] . setArg ( idx + + , sizeof ( dilationShape ) , dilationShape ) ;
ret | = kernel [ knl_idx ] . setArg ( idx + + , UP_DIV ( width , itemW [ knl_idx ] ) ) ;
ret | = kernel [ knl_idx ] . setArg ( idx + + , UP_DIV ( outChannel , 4 ) ) ;
ret | = kernel [ knl_idx ] . setArg ( idx + + , UP_DIV ( height , itemH [ knl_idx ] ) ) ;
MNN_CHECK_CL_SUCCESS ( ret , " setArg ConvBufLowMemory Kernel Select " ) ;
std : : pair < std : : vector < uint32_t > , int > retTune ;
retTune = gws2dLwsTune ( kernel [ knl_idx ] , globalWorkSize [ knl_idx ] , kernelName [ knl_idx ] + info , maxWorkGroupSize ) ;
if ( min_cost . first > retTune . second ) {
min_cost . first = retTune . second ;
min_cost . second = knl_idx ;
mLocalWorkSize = { retTune . first [ 0 ] , retTune . first [ 1 ] } ;
}
}
int min_index = min_cost . second ;
mGlobalWorkSize = { globalWorkSize [ min_index ] [ 0 ] , globalWorkSize [ min_index ] [ 1 ] } ;
std : : set < std : : string > buildOption = mResource - > buildOptions ;
if ( outputShape . at ( 3 ) % itemC [ min_index ] ! = 0 ) {
buildOption . emplace ( " -DCHANNEL_LEAVE " ) ;
}
if ( ( outputShape . at ( 2 ) % itemW [ min_index ] ) ! = 0 | | ( outputShape . at ( 1 ) % itemH [ min_index ] ) ! = 0 ) {
buildOption . emplace ( " -DBLOCK_LEAVE " ) ;
}
mKernel = mOpenCLBackend - > getOpenCLRuntime ( ) - > buildKernel ( " conv_2d_buf " , kernelName [ min_index ] , buildOption ) ;
uint32_t idx = 0 ;
cl_int ret = CL_SUCCESS ;
ret | = mKernel . setArg ( idx + + , mGlobalWorkSize [ 0 ] ) ;
ret | = mKernel . setArg ( idx + + , mGlobalWorkSize [ 1 ] ) ;
ret | = mKernel . setArg ( idx + + , openCLBuffer ( input ) ) ;
ret | = mKernel . setArg ( idx + + , openCLBuffer ( mResource - > filter . get ( ) ) ) ;
ret | = mKernel . setArg ( idx + + , openCLBuffer ( mResource - > dequantScale . get ( ) ) ) ;
ret | = mKernel . setArg ( idx + + , openCLBuffer ( mResource - > dequantOffset . get ( ) ) ) ;
ret | = mKernel . setArg ( idx + + , openCLBuffer ( mResource - > bias . get ( ) ) ) ;
ret | = mKernel . setArg ( idx + + , openCLBuffer ( output ) ) ;
ret | = mKernel . setArg ( idx + + , sizeof ( inputImageShape ) , inputImageShape ) ;
ret | = mKernel . setArg ( idx + + , inputChannels ) ;
ret | = mKernel . setArg ( idx + + , inputChannelBlocks ) ;
ret | = mKernel . setArg ( idx + + , sizeof ( outputImageShape ) , outputImageShape ) ;
ret | = mKernel . setArg ( idx + + , sizeof ( kernelShape ) , kernelShape ) ;
ret | = mKernel . setArg ( idx + + , sizeof ( strideShape ) , strideShape ) ;
ret | = mKernel . setArg ( idx + + , sizeof ( paddingShape ) , paddingShape ) ;
ret | = mKernel . setArg ( idx + + , sizeof ( dilationShape ) , dilationShape ) ;
ret | = mKernel . setArg ( idx + + , UP_DIV ( width , itemW [ min_index ] ) ) ;
ret | = mKernel . setArg ( idx + + , UP_DIV ( outChannel , 4 ) ) ;
ret | = mKernel . setArg ( idx + + , UP_DIV ( height , itemH [ min_index ] ) ) ;
MNN_CHECK_CL_SUCCESS ( ret , " setArg ConvBufLowMemory " ) ;
mOpenCLBackend - > recordKernel2d ( mKernel , mGlobalWorkSize , mLocalWorkSize ) ;
mOpenCLBackend - > endRecord ( mRecording ) ;
return ;
}
void ConvBufLowMemoryExecution : : tuneGemmLowMemory ( Tensor * input , Tensor * output ) {
std : : vector < int > inputShape = tensorShapeFormat ( input ) ;
std : : vector < int > outputShape = tensorShapeFormat ( output ) ;
auto runTime = ( ( OpenCLBackend * ) backend ( ) ) - > getOpenCLRuntime ( ) ;
mOpenCLBackend - > startRecord ( mRecording ) ;
const int outChannel = outputShape . at ( 3 ) ;
const int inputChannels = inputShape . at ( 3 ) ;
const int batch = outputShape . at ( 0 ) ;
const int inputChannelBlocks = UP_DIV ( inputChannels , 4 ) ;
const int outputChannelBlocks = UP_DIV ( outChannel , 4 ) ;
std : : string kernelname = " gemm_conv_buf " ;
int global_x = outputChannelBlocks ;
int global_y = batch ;
if ( batch > 1 ) {
kernelname = " gemm_conv_b2_buf " ;
global_y = UP_DIV ( batch , 2 ) ;
}
mKernel = mOpenCLBackend - > getOpenCLRuntime ( ) - > buildKernel ( " gemm_buf " , kernelname , mResource - > buildOptions ) ;
uint32_t maxWorkGroupSize = static_cast < uint32_t > ( mOpenCLBackend - > getOpenCLRuntime ( ) - > getMaxWorkGroupSize ( mKernel ) ) ;
mGlobalWorkSize = { static_cast < uint32_t > ( global_x ) , static_cast < uint32_t > ( global_y ) } ;
// MNN_PRINT("Kernel is %d.\n", min_index);
uint32_t idx = 0 ;
cl_int ret = CL_SUCCESS ;
ret | = mKernel . setArg ( idx + + , mGlobalWorkSize [ 0 ] ) ;
ret | = mKernel . setArg ( idx + + , mGlobalWorkSize [ 1 ] ) ;
ret | = mKernel . setArg ( idx + + , openCLBuffer ( input ) ) ;
ret | = mKernel . setArg ( idx + + , * mResource - > kernelBuffer . get ( ) ) ;
ret | = mKernel . setArg ( idx + + , openCLBuffer ( mResource - > dequantScale . get ( ) ) ) ;
ret | = mKernel . setArg ( idx + + , openCLBuffer ( mResource - > dequantOffset . get ( ) ) ) ;
ret | = mKernel . setArg ( idx + + , openCLBuffer ( mResource - > bias . get ( ) ) ) ;
ret | = mKernel . setArg ( idx + + , openCLBuffer ( output ) ) ;
ret | = mKernel . setArg ( idx + + , static_cast < int > ( outputChannelBlocks ) ) ;
ret | = mKernel . setArg ( idx + + , static_cast < int > ( inputChannelBlocks ) ) ;
ret | = mKernel . setArg ( idx + + , static_cast < int > ( batch ) ) ;
MNN_CHECK_CL_SUCCESS ( ret , " setArg gemm_conv_buf " ) ;
mLocalWorkSize = gws2dLwsTune ( mKernel , mGlobalWorkSize , kernelname , maxWorkGroupSize ) . first ;
mOpenCLBackend - > recordKernel2d ( mKernel , mGlobalWorkSize , mLocalWorkSize ) ;
mOpenCLBackend - > endRecord ( mRecording ) ;
return ;
}
ConvBufLowMemoryExecution : : ConvBufLowMemoryExecution ( const std : : vector < Tensor * > & inputs , const std : : vector < Tensor * > & outputs , const MNN : : Op * op , Backend * backend )
: ConvBufCommonExecution ( backend ) {
# ifdef LOG_VERBOSE
MNN_PRINT ( " Start ConvBufLowMemoryExecution init ! \n " ) ;
# endif
mResource . reset ( new ConvBufResource ) ;
mOpenCLBackend = static_cast < OpenCLBackend * > ( backend ) ;
const auto * conv2dParams = op - > main_as_Convolution2D ( ) ;
const auto * conv2dCommonParams = conv2dParams - > common ( ) ;
mConv2dParams = conv2dParams ;
mResource - > conv2dCommonParams = conv2dCommonParams ;
2024-02-29 16:21:40 +08:00
mResource - > mStrides = { conv2dCommonParams - > strideY ( ) , conv2dCommonParams - > strideX ( ) } ;
mResource - > mDilations = { conv2dCommonParams - > dilateY ( ) , conv2dCommonParams - > dilateX ( ) } ;
2023-12-27 17:26:44 +08:00
auto padding = ConvolutionCommon : : convolutionPad ( inputs [ 0 ] , outputs [ 0 ] , conv2dCommonParams ) ;
mPaddings [ 0 ] = padding . second ; //padY
mPaddings [ 1 ] = padding . first ; //padX
2024-02-29 16:21:40 +08:00
mResource - > mKernelWidth = conv2dCommonParams - > kernelX ( ) ;
mResource - > mKernelHeight = conv2dCommonParams - > kernelY ( ) ;
2023-12-27 17:26:44 +08:00
mOutputChannel = conv2dCommonParams - > outputCount ( ) ;
std : : string kernelName = " conv_2d_c4h1w4 " ;
2024-02-29 16:21:40 +08:00
mInputChannel = conv2dCommonParams - > inputCount ( ) ;
2023-12-27 17:26:44 +08:00
std : : shared_ptr < ConvolutionCommon : : Int8Common > quanCommon ;
// set mDequantScale, mDequantOffset, mFilterDataPtr
// prepare mDequantScale mDequantOffset mFilterDataPtr
getInfoFromOpLowMemory ( quanCommon ) ;
//select opt conv method
//std::vector<int> inputShape = tensorShapeFormat(inputs[0]);
//const int inputChannels = inputShape.at(3);
//const int batch = inputShape.at(0);
2024-02-29 16:21:40 +08:00
//printf("mConv1x1Opt = %d mKernelHeight = %d mKernelWidth = %d mPaddings[0] = %d mPaddings[1] = %d mStrides[0] = %d mStrides[1] = %d inputs[0]->width() = %d inputs[0]->height() = %d mOutputChannel = %d inputChannels = %d batch = %d\n", mConv1x1Opt, mKernelHeight, mKernelWidth,
//mPaddings[0], mPaddings[1], mStrides[0], mStrides[1], inputs[0]->width(), inputs[0]->height(), mOutputChannel, inputChannels, batch);
if ( mResource - > mKernelHeight = = mResource - > mKernelWidth & & mResource - > mKernelHeight = = 1 & & mResource - > mStrides [ 0 ] = = 1 & & mResource - > mStrides [ 1 ] = = 1 ) {
2023-12-27 17:26:44 +08:00
set1x1WeightLowMemory ( 4 , 4 , mFilterDataPtr , quanCommon ) ;
} else {
// set mFilter for not 1x1 case
setGeneralWeightLowMemory ( mFilterDataPtr , quanCommon ) ;
}
// Create Kernel
if ( conv2dCommonParams - > relu ( ) ) {
mResource - > buildOptions . emplace ( " -DRELU " ) ;
} else if ( conv2dCommonParams - > relu6 ( ) ) {
mResource - > buildOptions . emplace ( " -DRELU6 " ) ;
}
if ( mNumQuantBit = = 8 ) {
// int8 case
mResource - > buildOptions . emplace ( " -DUSE_LOW_BIT_WEIGHT_INT8 " ) ;
} else if ( mNumQuantBit = = 4 ) {
// int4 case
mResource - > buildOptions . emplace ( " -DUSE_LOW_BIT_WEIGHT_INT4 " ) ;
} else { /* More types to be supported. */ }
mKernel = mOpenCLBackend - > getOpenCLRuntime ( ) - > buildKernel ( " conv_2d_buf " , kernelName , mResource - > buildOptions ) ;
mMaxWorkGroupSize = static_cast < uint32_t > ( mOpenCLBackend - > getOpenCLRuntime ( ) - > getMaxWorkGroupSize ( mKernel ) ) ;
# ifdef LOG_VERBOSE
MNN_PRINT ( " end ConvExecution init ! \n " ) ;
# endif
}
ConvBufLowMemoryExecution : : ConvBufLowMemoryExecution ( std : : shared_ptr < ConvBufResource > resource , const Op * op , Backend * backend )
: ConvBufCommonExecution ( backend ) {
mResource = resource ;
2024-02-29 16:21:40 +08:00
const auto * conv2dParams = op - > main_as_Convolution2D ( ) ;
const auto * conv2dCommonParams = conv2dParams - > common ( ) ;
mConv2dParams = conv2dParams ;
mResource - > conv2dCommonParams = conv2dCommonParams ;
2023-12-27 17:26:44 +08:00
}
ConvBufLowMemoryExecution : : ~ ConvBufLowMemoryExecution ( ) {
// Do nothing
}
bool ConvBufLowMemoryExecution : : onClone ( Backend * bn , const Op * op , Execution * * dst ) {
if ( ! mValid ) {
return false ;
}
if ( nullptr = = dst ) {
return true ;
}
* dst = new ConvBufLowMemoryExecution ( mResource , op , bn ) ;
return true ;
}
ErrorCode ConvBufLowMemoryExecution : : onResize ( const std : : vector < Tensor * > & inputs , const std : : vector < Tensor * > & outputs ) {
# ifdef LOG_VERBOSE
MNN_PRINT ( " Start ConvExecution onResize ! \n " ) ;
# endif
auto input = inputs [ 0 ] ;
auto output = outputs [ 0 ] ;
2024-02-29 16:21:40 +08:00
auto padding = ConvolutionCommon : : convolutionPad ( input , output , mResource - > conv2dCommonParams ) ;
mPaddings [ 0 ] = padding . second ; //padY
mPaddings [ 1 ] = padding . first ; //padX
// onclone default use conv1x1Opt, need reset
mResource - > gemmOpt = ( mResource - > mKernelHeight = = mResource - > mKernelWidth & & mResource - > mKernelHeight = = 1 & & mPaddings [ 0 ] = = 0 & & mPaddings [ 1 ] = = 0 & & mResource - > mStrides [ 0 ] = = 1 & & mResource - > mStrides [ 1 ] = = 1 & & inputs [ 0 ] - > width ( ) = = 1 & & inputs [ 0 ] - > height ( ) = = 1 ) ;
mResource - > conv1x1Opt = ( mResource - > mKernelHeight = = mResource - > mKernelWidth & & mResource - > mKernelHeight = = 1 & & mPaddings [ 0 ] = = 0 & & mPaddings [ 1 ] = = 0 & & mResource - > mStrides [ 0 ] = = 1 & & mResource - > mStrides [ 1 ] = = 1 & & inputs [ 0 ] - > width ( ) > = 4 ) ;
2023-12-27 17:26:44 +08:00
if ( mResource - > conv1x1Opt ) {
tune1x1CaseLowMemory ( input , output ) ;
} else if ( mResource - > gemmOpt ) {
tuneGemmLowMemory ( input , output ) ;
} else {
tuneGeneralCaseLowMemory ( input , output ) ;
}
# ifdef LOG_VERBOSE
MNN_PRINT ( " end ConvExecution onResize ! \n " ) ;
# endif
return NO_ERROR ;
}
ErrorCode ConvBufLowMemoryExecution : : onExecute ( const std : : vector < Tensor * > & inputs , const std : : vector < Tensor * > & outputs ) {
# ifdef LOG_VERBOSE
MNN_PRINT ( " Start ConvExecution onExecute ! \n " ) ;
# endif
# ifdef ENABLE_OPENCL_TIME_PROFILER
cl : : Event event ;
runKernel2D ( mKernel , mGlobalWorkSize , mLocalWorkSize , mOpenCLBackend - > getOpenCLRuntime ( ) , & event ) ;
mOpenCLBackend - > getOpenCLRuntime ( ) - > pushEvent ( { " ConvBuf2D " , event } ) ;
# else
if ( mOpenCLBackend - > isUseRecordQueue ( ) ) {
if ( mOpenCLBackend - > isDevideOpRecord ( ) )
mOpenCLBackend - > addRecord ( mRecording ) ;
# ifdef LOG_VERBOSE
MNN_PRINT ( " End ConvExecution onExecute... \n " ) ;
# endif
return NO_ERROR ;
}
// gemm/gemv:
// input : (batch, ic/4, 4)
// weight: (ic/4, oc, 4)
// output: (batch, oc, 4)
runKernel2D ( mKernel , mGlobalWorkSize , mLocalWorkSize , mOpenCLBackend - > getOpenCLRuntime ( ) ) ;
# endif
# ifdef LOG_VERBOSE
MNN_PRINT ( " end ConvExecution onExecute ! \n " ) ;
# endif
return NO_ERROR ;
}
} // namespace OpenCL
} // namespace MNN
# endif /* MNN_OPENCL_BUFFER_CLOSED */
# endif /* MNN_LOW_MEMORY */