MNN/source/backend/opencl/execution/image/GridSampleExecution.cpp

111 lines
4.0 KiB
C++
Raw Normal View History

2023-06-16 09:42:45 +08:00
//
// GridSampleExecution.cpp
// MNN
//
// Created by MNN on 2021/08/03.
// Copyright © 2018, Alibaba Group Holding Limited
//
#include "backend/opencl/execution/image/GridSampleExecution.hpp"
#include "core/TensorUtils.hpp"
#include "backend/cpu/CPUTensorConvert.hpp"
namespace MNN {
namespace OpenCL {
GridSampleExecution::GridSampleExecution(const std::vector<Tensor *> &inputs, const MNN::Op *op, Backend *backend)
: Execution(backend) {
mPaddingMode = op->main_as_GridSample()->paddingMode();
if (op->main_as_GridSample()->alignCorners()) {
mAlignCorners = 1;
}
else {
mAlignCorners = 0;
}
mOpenCLBackend = static_cast<OpenCLBackend *>(backend);
auto runtime = mOpenCLBackend->getOpenCLRuntime();
auto gridSampleParam = op->main_as_GridSample();
std::set<std::string> buildOptions;
if (op->main_as_GridSample()->mode() == 0) {
mKernelName = "bilinear";
mKernel = runtime->buildKernel("grid_sample", mKernelName, buildOptions);
}
else {
mKernelName = "nearest";
mKernel = runtime->buildKernel("grid_sample", mKernelName, buildOptions);
}
mMaxWorkGroupSize = static_cast<uint32_t>(runtime->getMaxWorkGroupSize(mKernel));
}
ErrorCode GridSampleExecution::onResize(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs) {
2023-12-27 17:26:44 +08:00
mOpenCLBackend->startRecord(mRecording);
auto inputTensor = inputs[0];
auto gridTensor = inputs[1];
auto outputTensor = outputs[0];
const int batches = inputTensor->buffer().dim[0].extent;
const int channels = inputTensor->buffer().dim[1].extent;
const int inH = inputTensor->buffer().dim[2].extent;
const int inW = inputTensor->buffer().dim[3].extent;
const int channelC4 = UP_DIV(channels, 4);
const int outH = outputTensor->buffer().dim[2].extent;
const int outW = outputTensor->buffer().dim[3].extent;
mGlobalWorkSize = {
static_cast<uint32_t>(channelC4),
static_cast<uint32_t>(outW),
static_cast<uint32_t>(outH * batches)
};
MNN_ASSERT(outW > 0 && outH > 0);
uint32_t idx = 0;
2023-07-31 14:24:48 +08:00
cl_int ret = CL_SUCCESS;
ret |= mKernel.setArg(idx++, mGlobalWorkSize[0]);
ret |= mKernel.setArg(idx++, mGlobalWorkSize[1]);
ret |= mKernel.setArg(idx++, mGlobalWorkSize[2]);
ret |= mKernel.setArg(idx++, openCLImage(inputTensor));
ret |= mKernel.setArg(idx++, openCLImage(gridTensor));
ret |= mKernel.setArg(idx++, openCLImage(outputTensor));
ret |= mKernel.setArg(idx++, static_cast<uint32_t>(inH));
ret |= mKernel.setArg(idx++, static_cast<uint32_t>(inW));
ret |= mKernel.setArg(idx++, static_cast<uint32_t>(outH));
ret |= mKernel.setArg(idx++, static_cast<uint32_t>(outW));
ret |= mKernel.setArg(idx++, mPaddingMode);
ret |= mKernel.setArg(idx++, mAlignCorners);
MNN_CHECK_CL_SUCCESS(ret, "setArg GridSampleExecution");
2023-12-27 17:26:44 +08:00
mLocalWorkSize = localWS3DDefault(mGlobalWorkSize, mMaxWorkGroupSize, mOpenCLBackend->getOpenCLRuntime(), mKernelName, mKernel).first;
mOpenCLBackend->recordKernel3d(mKernel, mGlobalWorkSize, mLocalWorkSize);
mOpenCLBackend->endRecord(mRecording);
return NO_ERROR;
}
ErrorCode GridSampleExecution::onExecute(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs) {
#ifdef ENABLE_OPENCL_TIME_PROFILER
cl::Event event;
run3DKernelDefault(mKernel, mGlobalWorkSize, mLocalWorkSize,
mOpenCLBackend->getOpenCLRuntime(), &event);
mOpenCLBackend->getOpenCLRuntime()->pushEvent({"GridSample", event});
#else
2023-12-27 17:26:44 +08:00
if(mOpenCLBackend->isUseRecordQueue()){
if(mOpenCLBackend->isDevideOpRecord())
mOpenCLBackend->addRecord(mRecording);
2023-06-16 09:42:45 +08:00
return NO_ERROR;
}
run3DKernelDefault(mKernel, mGlobalWorkSize, mLocalWorkSize, mOpenCLBackend->getOpenCLRuntime());
#endif
return NO_ERROR;
}
2023-12-27 17:26:44 +08:00
using GridSampleCreator = TypedCreator<GridSampleExecution>;
REGISTER_OPENCL_OP_CREATOR(GridSampleCreator, OpType_GridSample, IMAGE);
} // namespace OpenCL
2023-06-16 09:42:45 +08:00
} // namespace MNN