2022-08-23 21:21:29 +08:00
|
|
|
|
## expr
|
|
|
|
|
|
|
|
|
|
```python
|
|
|
|
|
module expr
|
|
|
|
|
```
|
|
|
|
|
expr是MNN的表达式模块,包含了一系列的表达式函数能够构造MNN中所有的算子,并提供了类型[Var](Var.md)用来描述数据与表达式。
|
|
|
|
|
|
|
|
|
|
通过表达式函数和Var变量的组合,可以实现以下功能:
|
|
|
|
|
- 模型推理
|
|
|
|
|
- 数值计算
|
|
|
|
|
- 模型构造
|
|
|
|
|
|
|
|
|
|
---
|
|
|
|
|
### `expr Types`
|
|
|
|
|
- [Var](Var.md)
|
2022-08-31 20:11:16 +08:00
|
|
|
|
- `var_like` 指`Var`或者可以转换为`Var`的数据,如:`list`,`tuple`,`scalar`等
|
2022-08-23 21:21:29 +08:00
|
|
|
|
|
2022-08-31 20:11:16 +08:00
|
|
|
|
---
|
|
|
|
|
### `const(value_list, shape, data_format, dtype)`
|
|
|
|
|
根据输入数据创建一个`Const`类型的`Var`;该函数是创建的`Var`的最基本函数,
|
2022-09-30 10:02:52 +08:00
|
|
|
|
能够将`list`,`tuple`,`bytes`,`ndarray`,`PyCapsule`,`int指针`等格式的数据转换成`Var`
|
2022-08-31 20:11:16 +08:00
|
|
|
|
|
2022-09-09 17:21:11 +08:00
|
|
|
|
*注意:`value_list`仅在PYMNN_NUMPY_USABLE打开的情况下支持`ndarray`,移动端默认关闭*
|
|
|
|
|
|
2022-08-31 20:11:16 +08:00
|
|
|
|
参数:
|
2022-09-30 10:02:52 +08:00
|
|
|
|
- `value_list:ndarray/list/tuple/bytes/PyCapsule/int_addr` 输入数据
|
2022-08-31 20:11:16 +08:00
|
|
|
|
- `shape:[int]` 构造`Var`的形状
|
|
|
|
|
- `data_format:data_format` 数据排布格式,参考[data_format](Var.html#data-format)
|
|
|
|
|
- `dtype:dtype` 数据类型,参考[dtype](Var.html#dtype)
|
|
|
|
|
|
|
|
|
|
返回:创建的`Var`
|
|
|
|
|
|
|
|
|
|
返回类型:`Var`
|
|
|
|
|
|
|
|
|
|
示例:
|
|
|
|
|
|
|
|
|
|
```python
|
|
|
|
|
>>> import numpy as np
|
|
|
|
|
>>> expr.const(np.arange(4.0).astype(np.float32), [1, 4], expr.NCHW, expr.float) # ndarray
|
|
|
|
|
array([[0., 1., 2., 3.]], dtype=float32)
|
|
|
|
|
>>> expr.const([2, 3, 4], [3], expr.NCHW, expr.int) # list/tuple
|
|
|
|
|
array([2, 3, 4], dtype=int32)
|
|
|
|
|
>>> expr.const(bytes('abc', encoding='utf8'), [3], expr.NCHW, expr.uint8) # bytes
|
|
|
|
|
array([97, 98, 99], dtype=uint8)
|
|
|
|
|
>>> expr.const(MNN.Tensor([2, 3]).getData(), [2], expr.NCHW, expr.int) # PyCapsule
|
|
|
|
|
array([2, 3], dtype=int32)
|
2022-09-30 10:02:52 +08:00
|
|
|
|
>>> expr.const(np.arange(4.0).astype(np.float32).__array_interface__['data'][0], [4], expr.NCHW, expr.float) # int_addr 该方法要求ndarray内存必须连续
|
|
|
|
|
array([0., 1., 2., 3.], dtype=float32)
|
2022-08-31 20:11:16 +08:00
|
|
|
|
```
|
|
|
|
|
---
|
|
|
|
|
### `set_thread_number(numberThread)`
|
|
|
|
|
设置表达式求值的线程数
|
|
|
|
|
|
|
|
|
|
参数:
|
|
|
|
|
- `numberThread:int` 线程数,当`numberThread < 1`时,设置`numberThread=1`,当`numberThread > 8`时,设置`numberThread=8`
|
|
|
|
|
|
|
|
|
|
返回:`None`
|
|
|
|
|
|
|
|
|
|
返回类型:`None`
|
|
|
|
|
|
|
|
|
|
示例:
|
|
|
|
|
|
|
|
|
|
```python
|
|
|
|
|
>>> expr.set_thread_number(4)
|
|
|
|
|
```
|
|
|
|
|
---
|
|
|
|
|
### `load_as_list(fileName)`
|
|
|
|
|
从文件中加载模型,并将模型转换为计算图,以`list`的形式返回计算图的所有`Var`节点
|
|
|
|
|
|
|
|
|
|
参数:
|
|
|
|
|
- `fileName:str` 模型文件路径
|
|
|
|
|
|
|
|
|
|
返回:加载的模型计算图
|
|
|
|
|
|
|
|
|
|
返回类型:`[Var]`
|
|
|
|
|
|
|
|
|
|
示例:
|
|
|
|
|
|
|
|
|
|
```python
|
|
|
|
|
>>> len(expr.load_as_list('mobilenet_v1.mnn'))
|
|
|
|
|
31
|
|
|
|
|
```
|
|
|
|
|
---
|
|
|
|
|
### `save(vars, fileName, |forInference)`
|
|
|
|
|
将`list`形式的计算图存储为模型文件,此函数也用于将`Var`保存到磁盘中
|
|
|
|
|
|
|
|
|
|
参数:
|
|
|
|
|
- `vars:list` 计算图的`list`形式
|
|
|
|
|
- `fileName:str` 模型文件路径
|
|
|
|
|
- `forInference:bool` 是否仅保存为推理使用,默认为`True`
|
|
|
|
|
|
|
|
|
|
返回:存储计算图到模型文件中
|
|
|
|
|
|
|
|
|
|
返回类型:`None`
|
|
|
|
|
|
|
|
|
|
示例:
|
|
|
|
|
|
|
|
|
|
```python
|
|
|
|
|
>>> x = expr.const([1., 2., 3., 4.], [2, 2])
|
|
|
|
|
>>> expr.save([x], 'x.mnn')
|
|
|
|
|
>>> expr.load_as_list('x.mnn')
|
|
|
|
|
[array([[1., 2.],
|
|
|
|
|
[3., 4.]], dtype=float32)]
|
|
|
|
|
```
|
|
|
|
|
---
|
|
|
|
|
### `gc(full)`
|
|
|
|
|
手动回收内存,当在循环中调用MNN表达式求值时,常量部分数据不会在每次循环结束释放,当执行次数增加时会有内存增长现象,可以在每次循环结束时调用该函数回收常量内存
|
|
|
|
|
|
|
|
|
|
参数:
|
|
|
|
|
- `full:bool` 是否全部回收,*目前回收方式`True`和`False`没有区别*
|
|
|
|
|
|
|
|
|
|
返回:`None`
|
|
|
|
|
|
|
|
|
|
返回类型:`None`
|
|
|
|
|
|
|
|
|
|
示例:
|
|
|
|
|
|
|
|
|
|
```python
|
|
|
|
|
>>> expr.gc(1)
|
|
|
|
|
```
|
|
|
|
|
---
|
|
|
|
|
### `lazy_eval(lazy)`
|
|
|
|
|
是否开启惰性求值,在Python中默认关闭;主要区别如下:
|
|
|
|
|
|
|
|
|
|
| 模式 | 开启惰性求值 | 关闭惰性求值 |
|
|
|
|
|
|:----|:-----------|:-----------|
|
|
|
|
|
| 构建区别 | 创建的`Var`时实际表达式类型 | 创建的`Var`都是`Const`类型 |
|
|
|
|
|
| 计算方式 | 对`Var`执行read操作时触发计算 | 构建表达式时会立即执行计算 |
|
|
|
|
|
| 应用场景 | 使用表达式构建模型,训练,需要对表达式进行修改 | 数值计算,关闭后会加速和降低内存占用 |
|
|
|
|
|
|
|
|
|
|
参数:
|
|
|
|
|
- `lazy:bool` 是否开启惰性求值
|
|
|
|
|
|
|
|
|
|
返回:`None`
|
|
|
|
|
|
|
|
|
|
返回类型:`None`
|
|
|
|
|
|
|
|
|
|
示例:
|
|
|
|
|
|
|
|
|
|
```python
|
|
|
|
|
>>> expr.placeholder().op_type
|
|
|
|
|
'Const'
|
|
|
|
|
>>> expr.lazy_eval(True)
|
|
|
|
|
>>> expr.placeholder().op_type
|
|
|
|
|
'Input'
|
|
|
|
|
```
|
2022-08-23 21:21:29 +08:00
|
|
|
|
---
|
|
|
|
|
### `sign(x)`
|
|
|
|
|
返回输入值的符号,正数返回1,负数返回-1
|
|
|
|
|
|
|
|
|
|
参数:
|
|
|
|
|
- `x:Var_like` 输入变量
|
|
|
|
|
|
|
|
|
|
返回:x的符号,`1`或`-1`
|
|
|
|
|
|
|
|
|
|
返回类型:`Var`
|
|
|
|
|
|
|
|
|
|
示例:
|
|
|
|
|
|
|
|
|
|
```python
|
|
|
|
|
>>> expr.sign([-5., 4.5])
|
|
|
|
|
array([-1., 1.])
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
---
|
|
|
|
|
### `abs(x)`
|
|
|
|
|
返回输入值的绝对值,正数返回原值,负数返回相反数
|
|
|
|
|
|
|
|
|
|
参数:
|
|
|
|
|
- `x:Var_like` 输入变量
|
|
|
|
|
|
|
|
|
|
返回:x的绝对值
|
|
|
|
|
|
|
|
|
|
返回类型:`Var`
|
|
|
|
|
|
|
|
|
|
示例:
|
|
|
|
|
|
|
|
|
|
```python
|
|
|
|
|
>>> expr.abs([-5., 4.5])
|
|
|
|
|
array([5., 4.5])
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
---
|
|
|
|
|
### `negative(x)`
|
|
|
|
|
返回输入值的相反数
|
|
|
|
|
|
|
|
|
|
参数:
|
|
|
|
|
- `x:Var_like` 输入变量
|
|
|
|
|
|
|
|
|
|
返回:x的相反数
|
|
|
|
|
|
|
|
|
|
返回类型:`Var`
|
|
|
|
|
|
|
|
|
|
示例:
|
|
|
|
|
|
|
|
|
|
```python
|
|
|
|
|
>>> expr.abs([-5., 4.5])
|
|
|
|
|
array([5., -4.5])
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
---
|
|
|
|
|
### `floor(x)`
|
|
|
|
|
返回不大于输入值的最大整数
|
|
|
|
|
|
|
|
|
|
参数:
|
|
|
|
|
- `x:Var_like` 输入变量
|
|
|
|
|
|
|
|
|
|
返回:不大于x的最大整数
|
|
|
|
|
|
|
|
|
|
返回类型:`Var`
|
|
|
|
|
|
|
|
|
|
示例:
|
|
|
|
|
|
|
|
|
|
```python
|
|
|
|
|
>>> expr.floor([-5.1, 4.5])
|
2022-08-31 20:11:16 +08:00
|
|
|
|
array([-6., 4.])
|
2022-08-23 21:21:29 +08:00
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
---
|
|
|
|
|
### `round(x)`
|
|
|
|
|
返回输入值的四舍五入的值
|
|
|
|
|
|
|
|
|
|
参数:
|
|
|
|
|
- `x:Var_like` 输入变量
|
|
|
|
|
|
|
|
|
|
返回:x的四舍五入的值
|
|
|
|
|
|
|
|
|
|
返回类型:`Var`
|
|
|
|
|
|
|
|
|
|
示例:
|
|
|
|
|
|
|
|
|
|
```python
|
|
|
|
|
>>> expr.round([-5.1, 4.5])
|
2022-08-31 20:11:16 +08:00
|
|
|
|
array([-5., 5.])
|
2022-08-23 21:21:29 +08:00
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
---
|
|
|
|
|
### `ceil(x)`
|
|
|
|
|
返回输入值的整数部分的值
|
|
|
|
|
|
|
|
|
|
参数:
|
|
|
|
|
- `x:Var_like` 输入变量
|
|
|
|
|
|
|
|
|
|
返回:x的整数部分的值
|
|
|
|
|
|
|
|
|
|
返回类型:`Var`
|
|
|
|
|
|
|
|
|
|
示例:
|
|
|
|
|
|
|
|
|
|
```python
|
|
|
|
|
>>> expr.ceil([-4.9, 4.5])
|
2022-08-31 20:11:16 +08:00
|
|
|
|
array([-4., 5.])
|
2022-08-23 21:21:29 +08:00
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
---
|
|
|
|
|
### `square(x)`
|
|
|
|
|
返回输入值的平方值
|
|
|
|
|
|
|
|
|
|
参数:
|
|
|
|
|
- `x:Var_like` 输入变量
|
|
|
|
|
|
|
|
|
|
返回:x的平方值
|
|
|
|
|
|
|
|
|
|
返回类型:`Var`
|
|
|
|
|
|
|
|
|
|
示例:
|
|
|
|
|
|
|
|
|
|
```python
|
|
|
|
|
>>> expr.square([-5., 4.5])
|
2022-08-31 20:11:16 +08:00
|
|
|
|
array([25., 20.25])
|
2022-08-23 21:21:29 +08:00
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
---
|
|
|
|
|
### `sqrt(x)`
|
|
|
|
|
返回输入值的平方根的值,输入值为非负实数
|
|
|
|
|
|
|
|
|
|
参数:
|
|
|
|
|
- `x:Var_like` 输入变量
|
|
|
|
|
|
|
|
|
|
返回:x的平方根的值
|
|
|
|
|
|
|
|
|
|
返回类型:`Var`
|
|
|
|
|
|
|
|
|
|
示例:
|
|
|
|
|
|
|
|
|
|
```python
|
|
|
|
|
>>> expr.sqrt([9., 4.5])
|
2022-08-31 20:11:16 +08:00
|
|
|
|
array([3., 2.1213202])
|
2022-08-23 21:21:29 +08:00
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
---
|
|
|
|
|
### `rsqrt(x)`
|
|
|
|
|
返回输入值的平方根的倒数的值,输入值为非负实数
|
|
|
|
|
|
|
|
|
|
参数:
|
|
|
|
|
- `x:Var_like` 输入变量
|
|
|
|
|
|
|
|
|
|
返回:x的平方根的倒数的值
|
|
|
|
|
|
|
|
|
|
返回类型:`Var`
|
|
|
|
|
|
|
|
|
|
示例:
|
|
|
|
|
|
|
|
|
|
```python
|
|
|
|
|
>>> expr.rsqrt([9., 4.5])
|
2022-08-31 20:11:16 +08:00
|
|
|
|
array([0.33333334, 0.47140455])
|
2022-08-23 21:21:29 +08:00
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
---
|
|
|
|
|
### `exp(x)`
|
|
|
|
|
返回自然常数e的输入值(x)次方的值
|
|
|
|
|
|
|
|
|
|
参数:
|
|
|
|
|
- `x:Var_like` 输入变量
|
|
|
|
|
|
|
|
|
|
返回:自然常数e的x次方的值
|
|
|
|
|
|
|
|
|
|
返回类型:`Var`
|
|
|
|
|
|
|
|
|
|
示例:
|
|
|
|
|
|
|
|
|
|
```python
|
|
|
|
|
>>> expr.exp([9., 4.5])
|
2022-08-31 20:11:16 +08:00
|
|
|
|
array([8102.449, 90.01698])
|
2022-08-23 21:21:29 +08:00
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
---
|
|
|
|
|
### `log(x)`
|
|
|
|
|
返回输入值以自然常数e为底的对数值
|
|
|
|
|
|
|
|
|
|
参数:
|
|
|
|
|
- `x:Var_like` 输入变量
|
|
|
|
|
|
|
|
|
|
返回:x的以自然常数e为底的对数值
|
|
|
|
|
|
|
|
|
|
返回类型:`Var`
|
|
|
|
|
|
|
|
|
|
示例:
|
|
|
|
|
|
|
|
|
|
```python
|
|
|
|
|
>>> expr.log([9., 4.5])
|
2022-08-31 20:11:16 +08:00
|
|
|
|
array([2.1972246, 1.5040774])
|
2022-08-23 21:21:29 +08:00
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
---
|
|
|
|
|
### `sin(x)`
|
|
|
|
|
返回输入值的正弦值
|
|
|
|
|
|
|
|
|
|
参数:
|
|
|
|
|
- `x:Var_like` 输入变量
|
|
|
|
|
|
|
|
|
|
返回:x的正弦值
|
|
|
|
|
|
|
|
|
|
返回类型:`Var`
|
|
|
|
|
|
|
|
|
|
示例:
|
|
|
|
|
|
|
|
|
|
```python
|
|
|
|
|
>>> expr.sin([9., 4.5])
|
2022-08-31 20:11:16 +08:00
|
|
|
|
array([0.4121185, -0.9775301])
|
2022-08-23 21:21:29 +08:00
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
---
|
|
|
|
|
### `sinh(x)`
|
|
|
|
|
返回输入值的双曲正弦值
|
|
|
|
|
相当于 1/2 * (np.exp(x) - np.exp(-x)) 或者 -1j * np.sin(1j*x)
|
|
|
|
|
|
|
|
|
|
参数:
|
|
|
|
|
- `x:Var_like` 输入变量
|
|
|
|
|
|
|
|
|
|
返回:x的双曲正弦值
|
|
|
|
|
|
|
|
|
|
返回类型:`Var`
|
|
|
|
|
|
|
|
|
|
示例:
|
|
|
|
|
|
|
|
|
|
```python
|
|
|
|
|
>>> expr.sinh([9., 4.5])
|
2022-08-31 20:11:16 +08:00
|
|
|
|
array([4051.542, 45.00301])
|
2022-08-23 21:21:29 +08:00
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
---
|
|
|
|
|
### `cos(x)`
|
|
|
|
|
返回输入值的余弦值
|
|
|
|
|
|
|
|
|
|
参数:
|
|
|
|
|
- `x:Var_like` 输入变量
|
|
|
|
|
|
|
|
|
|
返回:x的余弦值
|
|
|
|
|
|
|
|
|
|
返回类型:`Var`
|
|
|
|
|
|
|
|
|
|
示例:
|
|
|
|
|
|
|
|
|
|
```python
|
|
|
|
|
>>> expr.cos([9., 4.5])
|
2022-08-31 20:11:16 +08:00
|
|
|
|
array([-0.91113025, -0.2107958])
|
2022-08-23 21:21:29 +08:00
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
---
|
|
|
|
|
### `cosh(x)`
|
|
|
|
|
返回输入值的双曲余弦值
|
|
|
|
|
相当于 1/2 * (np.exp(x) + np.exp(-x)) 或者 np.cos(1j*x)
|
|
|
|
|
|
|
|
|
|
参数:
|
|
|
|
|
- `x:Var_like` 输入变量
|
|
|
|
|
|
|
|
|
|
返回:x的双曲余弦值
|
|
|
|
|
|
|
|
|
|
返回类型:`Var`
|
|
|
|
|
|
|
|
|
|
示例:
|
|
|
|
|
|
|
|
|
|
```python
|
|
|
|
|
>>> expr.cosh([9., 4.5])
|
2022-08-31 20:11:16 +08:00
|
|
|
|
array([4051.542, 45.014122])
|
2022-08-23 21:21:29 +08:00
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
---
|
|
|
|
|
### `tan(x)`
|
|
|
|
|
返回输入值的正切值
|
|
|
|
|
|
|
|
|
|
参数:
|
|
|
|
|
- `x:Var_like` 输入变量
|
|
|
|
|
|
|
|
|
|
返回:x的正切值
|
|
|
|
|
|
|
|
|
|
返回类型:`Var`
|
|
|
|
|
|
|
|
|
|
示例:
|
|
|
|
|
|
|
|
|
|
```python
|
|
|
|
|
>>> expr.tan([9., 4.5])
|
2022-08-31 20:11:16 +08:00
|
|
|
|
array([-0.45231566, 4.637332])
|
2022-08-23 21:21:29 +08:00
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
---
|
|
|
|
|
### `tanh(x)`
|
|
|
|
|
返回输入值的双曲正切值
|
|
|
|
|
相当于 np.sinh(x)/np.cosh(x) 或者 -1j * np.tan(1j*x)
|
|
|
|
|
|
|
|
|
|
参数:
|
|
|
|
|
- `x:Var_like` 输入变量
|
|
|
|
|
|
|
|
|
|
返回:x的双曲正切值
|
|
|
|
|
|
|
|
|
|
返回类型:`Var`
|
|
|
|
|
|
|
|
|
|
示例:
|
|
|
|
|
|
|
|
|
|
```python
|
|
|
|
|
>>> expr.tanh([9., 4.5])
|
2022-08-31 20:11:16 +08:00
|
|
|
|
array([1., 0.9997533])
|
2022-08-23 21:21:29 +08:00
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
---
|
|
|
|
|
### `asin(x)`
|
|
|
|
|
返回输入值的反正弦值,别名arcsin
|
|
|
|
|
|
|
|
|
|
参数:
|
|
|
|
|
- `x:Var_like` 输入变量
|
|
|
|
|
|
|
|
|
|
返回:x的反正弦值
|
|
|
|
|
|
|
|
|
|
返回类型:`Var`
|
|
|
|
|
|
|
|
|
|
示例:
|
|
|
|
|
|
|
|
|
|
```python
|
|
|
|
|
>>> expr.asin([9., 0.5])
|
2022-08-31 20:11:16 +08:00
|
|
|
|
array([nan, 0.5235988])
|
2022-08-23 21:21:29 +08:00
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
---
|
|
|
|
|
### `asinh(x)`
|
|
|
|
|
返回输入值的双曲反正弦值,别名arcsinh
|
|
|
|
|
|
|
|
|
|
参数:
|
|
|
|
|
- `x:Var_like` 输入变量
|
|
|
|
|
|
|
|
|
|
返回:x的双曲反正弦值
|
|
|
|
|
|
|
|
|
|
返回类型:`Var`
|
|
|
|
|
|
|
|
|
|
示例:
|
|
|
|
|
|
|
|
|
|
```python
|
|
|
|
|
>>> expr.asinh([9., 0.5])
|
2022-08-31 20:11:16 +08:00
|
|
|
|
array([2.893444, 0.4812118])
|
2022-08-23 21:21:29 +08:00
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
---
|
|
|
|
|
### `acos(x)`
|
|
|
|
|
返回输入值的反余弦值,别名arccos
|
|
|
|
|
|
|
|
|
|
参数:
|
|
|
|
|
- `x:Var_like` 输入变量
|
|
|
|
|
|
|
|
|
|
返回:x的反余弦值
|
|
|
|
|
|
|
|
|
|
返回类型:`Var`
|
|
|
|
|
|
|
|
|
|
示例:
|
|
|
|
|
|
|
|
|
|
```python
|
|
|
|
|
>>> expr.asin([9., 0.5])
|
2022-08-31 20:11:16 +08:00
|
|
|
|
array([nan, 1.0471975])
|
2022-08-23 21:21:29 +08:00
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
---
|
|
|
|
|
### `acosh(x)`
|
|
|
|
|
返回输入值的双曲反余弦值,别名arccosh
|
|
|
|
|
|
|
|
|
|
参数:
|
|
|
|
|
- `x:Var_like` 输入变量
|
|
|
|
|
|
|
|
|
|
返回:x的双曲反余弦值
|
|
|
|
|
|
|
|
|
|
返回类型:`Var`
|
|
|
|
|
|
|
|
|
|
示例:
|
|
|
|
|
|
|
|
|
|
```python
|
|
|
|
|
>>> expr.acosh([9., 0.5])
|
2022-08-31 20:11:16 +08:00
|
|
|
|
array([2.887271, nan])
|
2022-08-23 21:21:29 +08:00
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
---
|
|
|
|
|
### `atan(x)`
|
|
|
|
|
返回输入值的反正切值,别名arctan
|
|
|
|
|
|
|
|
|
|
参数:
|
|
|
|
|
- `x:Var_like` 输入变量
|
|
|
|
|
|
|
|
|
|
返回:x的反正切值
|
|
|
|
|
|
|
|
|
|
返回类型:`Var`
|
|
|
|
|
|
|
|
|
|
示例:
|
|
|
|
|
|
|
|
|
|
```python
|
|
|
|
|
>>> expr.atan([9., 0.5])
|
2022-08-31 20:11:16 +08:00
|
|
|
|
array([1.4601392, 0.4636476])
|
2022-08-23 21:21:29 +08:00
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
---
|
|
|
|
|
### `atanh(x)`
|
|
|
|
|
返回输入值的双曲反正切值,别名arctanh
|
|
|
|
|
|
|
|
|
|
参数:
|
|
|
|
|
- `x:Var_like` 输入变量
|
|
|
|
|
|
|
|
|
|
返回:x的双曲反正切值
|
|
|
|
|
|
|
|
|
|
返回类型:`Var`
|
|
|
|
|
|
|
|
|
|
示例:
|
|
|
|
|
|
|
|
|
|
```python
|
|
|
|
|
>>> expr.atanh([9., 0.5])
|
2022-08-31 20:11:16 +08:00
|
|
|
|
array([1.4601392, 0.4636476])
|
2022-08-23 21:21:29 +08:00
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
---
|
|
|
|
|
### `reciprocal(x)`
|
|
|
|
|
返回输入值的倒数,输入值不能为0
|
|
|
|
|
|
|
|
|
|
参数:
|
|
|
|
|
- `x:Var_like` 输入变量
|
|
|
|
|
|
|
|
|
|
返回:x的倒数
|
|
|
|
|
|
|
|
|
|
返回类型:`Var`
|
|
|
|
|
|
|
|
|
|
示例:
|
|
|
|
|
|
|
|
|
|
```python
|
|
|
|
|
>>> expr.reciprocal([9., 0.5])
|
2022-08-31 20:11:16 +08:00
|
|
|
|
array([0.11111111, 2.])
|
2022-08-23 21:21:29 +08:00
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
---
|
|
|
|
|
### `log1p(x)`
|
|
|
|
|
返回log(1 + x)的值
|
|
|
|
|
|
|
|
|
|
参数:
|
|
|
|
|
- `x:Var_like` 输入变量
|
|
|
|
|
|
|
|
|
|
返回:log(1 + x)的值
|
|
|
|
|
|
|
|
|
|
返回类型:`Var`
|
|
|
|
|
|
|
|
|
|
示例:
|
|
|
|
|
|
|
|
|
|
```python
|
|
|
|
|
>>> expr.log1p([9., 0.5])
|
2022-08-31 20:11:16 +08:00
|
|
|
|
array([2.3025851, 0.4054651])
|
2022-08-23 21:21:29 +08:00
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
### `gelu(x)`
|
|
|
|
|
返回 0.5x(1+tanh(sqrt(pi/2)*(0.044715*x^3))) 的值
|
|
|
|
|
|
|
|
|
|
参数:
|
|
|
|
|
- `x:Var_like` 输入变量
|
|
|
|
|
|
|
|
|
|
返回:0.5x(1+tanh(sqrt(pi/2)*(0.044715*x^3))) 的值
|
|
|
|
|
|
|
|
|
|
返回类型:`Var`
|
|
|
|
|
|
|
|
|
|
示例:
|
|
|
|
|
|
|
|
|
|
```python
|
|
|
|
|
>>> expr.gelu([9., 0.5])
|
2022-08-31 20:11:16 +08:00
|
|
|
|
array([9., 0.345714])
|
2022-08-23 21:21:29 +08:00
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
---
|
|
|
|
|
### `sigmoid(x)`
|
|
|
|
|
返回 1/(1+exp(-1) 的值
|
|
|
|
|
|
|
|
|
|
参数:
|
|
|
|
|
- `x:Var_like` 输入变量
|
|
|
|
|
|
|
|
|
|
返回:1/(1+exp(-1)的值
|
|
|
|
|
|
|
|
|
|
返回类型:`Var`
|
|
|
|
|
|
|
|
|
|
示例:
|
|
|
|
|
|
|
|
|
|
```python
|
|
|
|
|
>>> expr.sigmoid([9., 0.5])
|
2022-08-31 20:11:16 +08:00
|
|
|
|
array([0.9998766, 0.62246716])
|
2022-08-23 21:21:29 +08:00
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
---
|
|
|
|
|
### `erf(x)`
|
|
|
|
|
计算高斯误差函数值的数据输入
|
|
|
|
|
|
|
|
|
|
参数:
|
|
|
|
|
- `x:Var_like` 输入变量
|
|
|
|
|
|
|
|
|
|
返回:高斯误差函数值的数据
|
|
|
|
|
|
|
|
|
|
返回类型:`Var`
|
|
|
|
|
|
|
|
|
|
示例:
|
|
|
|
|
|
|
|
|
|
```python
|
|
|
|
|
>>> expr.erf([[1., 25., 16., 0.]])
|
2022-08-31 20:11:16 +08:00
|
|
|
|
array([0.8427007., 1., 1., 0.])
|
2022-08-23 21:21:29 +08:00
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
---
|
|
|
|
|
### `erfc(x)`
|
|
|
|
|
返回 x 的互补误差
|
|
|
|
|
|
|
|
|
|
参数:
|
|
|
|
|
- `x:Var_like` 输入变量
|
|
|
|
|
|
|
|
|
|
返回: x的互补误差
|
|
|
|
|
|
|
|
|
|
返回类型:`Var`
|
|
|
|
|
|
|
|
|
|
示例:
|
|
|
|
|
|
|
|
|
|
```python
|
|
|
|
|
>>> expr.erfc([0.67., 1.34., -6.])
|
2022-08-31 20:11:16 +08:00
|
|
|
|
array([0.34337229769969496., 0.05808628474163466., 2.0.])
|
2022-08-23 21:21:29 +08:00
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
---
|
|
|
|
|
### `erfinv(x)`
|
|
|
|
|
返回x的逆误差
|
|
|
|
|
|
|
|
|
|
参数:
|
|
|
|
|
- `x:Var_like` 输入变量
|
|
|
|
|
|
|
|
|
|
返回:x的逆误差
|
|
|
|
|
|
|
|
|
|
返回类型:`Var`
|
|
|
|
|
|
|
|
|
|
示例:
|
|
|
|
|
|
|
|
|
|
```python
|
|
|
|
|
>>> expr.erfinv([0.1., 0.2])
|
2022-08-31 20:11:16 +08:00
|
|
|
|
array([0.08885599., 0.17914345.])
|
2022-08-23 21:21:29 +08:00
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
---
|
|
|
|
|
### `expm1(x)`
|
|
|
|
|
返回 exp(x) - 1 的值
|
|
|
|
|
|
|
|
|
|
参数:
|
|
|
|
|
- `x:Var_like` 输入变量
|
|
|
|
|
|
|
|
|
|
返回:exp(x) - 1的值
|
|
|
|
|
|
|
|
|
|
返回类型:`Var`
|
|
|
|
|
|
|
|
|
|
示例:
|
|
|
|
|
|
|
|
|
|
```python
|
|
|
|
|
>>> expr.expm1([9., 0.5])
|
2022-08-31 20:11:16 +08:00
|
|
|
|
array([8.1014492e+03, 6.4869785e-01])
|
2022-08-23 21:21:29 +08:00
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
---
|
|
|
|
|
### `add(x, y)`
|
|
|
|
|
返回两个输入数的和
|
|
|
|
|
|
|
|
|
|
参数:
|
|
|
|
|
- `x:Var_like` 输入变量
|
|
|
|
|
- `y:Var_like` 输入变量
|
|
|
|
|
|
|
|
|
|
返回:x+y的值
|
|
|
|
|
|
|
|
|
|
返回类型:`Var`
|
|
|
|
|
|
|
|
|
|
示例:
|
|
|
|
|
|
|
|
|
|
```python
|
|
|
|
|
>>> expr.add([9., 0.5], [1.2, -3.0])
|
2022-08-31 20:11:16 +08:00
|
|
|
|
array([10.2, -2.5])
|
2022-08-23 21:21:29 +08:00
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
---
|
|
|
|
|
### `subtract(x, y)`
|
|
|
|
|
返回两个输入数的差值
|
|
|
|
|
|
|
|
|
|
参数:
|
|
|
|
|
- `x:Var_like` 输入变量
|
|
|
|
|
- `y:Var_like` 输入变量
|
|
|
|
|
|
|
|
|
|
返回:x - y 的值
|
|
|
|
|
|
|
|
|
|
返回类型:`Var`
|
|
|
|
|
|
|
|
|
|
示例:
|
|
|
|
|
|
|
|
|
|
```python
|
|
|
|
|
>>> expr.subtract([9., 0.5], [1.2, -3.0])
|
2022-08-31 20:11:16 +08:00
|
|
|
|
array([7.8, 3.5])
|
2022-08-23 21:21:29 +08:00
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
---
|
|
|
|
|
### `multiply(x, y)`
|
|
|
|
|
返回两个输入数的乘积
|
|
|
|
|
|
|
|
|
|
参数:
|
|
|
|
|
- `x:Var_like` 输入变量
|
|
|
|
|
- `y:Var_like` 输入变量
|
|
|
|
|
|
|
|
|
|
返回:x * y 的值
|
|
|
|
|
|
|
|
|
|
返回类型:`Var`
|
|
|
|
|
|
|
|
|
|
示例:
|
|
|
|
|
|
|
|
|
|
```python
|
|
|
|
|
>>> expr.multiply([9., 0.5], [1.2, -3.0])
|
2022-08-31 20:11:16 +08:00
|
|
|
|
array([10.8, -1.5])
|
2022-08-23 21:21:29 +08:00
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
---
|
|
|
|
|
### `divide(x, y)`
|
|
|
|
|
返回两个输入数相除的值,y值不能为0
|
|
|
|
|
|
|
|
|
|
参数:
|
|
|
|
|
- `x:Var_like` 输入变量
|
|
|
|
|
- `y:Var_like` 输入变量
|
|
|
|
|
|
|
|
|
|
返回:x / y 的值
|
|
|
|
|
|
|
|
|
|
返回类型:`Var`
|
|
|
|
|
|
|
|
|
|
示例:
|
|
|
|
|
|
|
|
|
|
```python
|
|
|
|
|
>>> expr.divide([9., 0.5], [1.2, -3.0])
|
2022-08-31 20:11:16 +08:00
|
|
|
|
array([7.4999995, -0.16666667])
|
2022-08-23 21:21:29 +08:00
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
---
|
|
|
|
|
### `floordiv(x, y)`
|
|
|
|
|
返回小于或等于代数商的最大(最接近正无穷大)int值
|
|
|
|
|
|
|
|
|
|
参数:
|
|
|
|
|
- `x:Var_like` 输入变量
|
|
|
|
|
- `y:Var_like` 输入变量
|
|
|
|
|
|
|
|
|
|
返回:x // y 的值
|
|
|
|
|
|
|
|
|
|
返回类型:`Var`
|
|
|
|
|
|
|
|
|
|
示例:
|
|
|
|
|
|
|
|
|
|
```python
|
|
|
|
|
>>> expr.floordiv([9., 0.5], [1.2, -3.0])
|
2022-08-31 20:11:16 +08:00
|
|
|
|
array([7., -1.])
|
2022-08-23 21:21:29 +08:00
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
---
|
|
|
|
|
### `mod(x, y)`
|
|
|
|
|
返回两个输入数求余的值,y不能为0,取余运算在计算商值向0方向舍弃小数位
|
|
|
|
|
|
|
|
|
|
参数:
|
|
|
|
|
- `x:Var_like` 输入变量
|
|
|
|
|
- `y:Var_like` 输入变量
|
|
|
|
|
|
|
|
|
|
返回:x % y 的值
|
|
|
|
|
|
|
|
|
|
返回类型:`Var`
|
|
|
|
|
|
|
|
|
|
示例:
|
|
|
|
|
|
|
|
|
|
```python
|
|
|
|
|
>>> expr.mod([9., 0.5], [1.2, -3.0])
|
2022-08-31 20:11:16 +08:00
|
|
|
|
array([0.59999967, 0.5])
|
2022-08-23 21:21:29 +08:00
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
---
|
|
|
|
|
### `floormod(x, y)`
|
|
|
|
|
返回两个输入数取模的值,y不能为0,取模运算在计算商值向负无穷方向舍弃小数位
|
|
|
|
|
|
|
|
|
|
参数:
|
|
|
|
|
- `x:Var_like` 输入变量
|
|
|
|
|
- `y:Var_like` 输入变量
|
|
|
|
|
|
|
|
|
|
返回:(1)与y符号相同
|
|
|
|
|
(2)x > y:结果的绝对值与 % 运算相同;
|
|
|
|
|
(3)x < y:①符号相同 结果的绝对值为 y – x ;②符号不同 结果的绝对值与 % 运算相同
|
|
|
|
|
|
|
|
|
|
返回类型:`Var`
|
|
|
|
|
|
|
|
|
|
示例:
|
|
|
|
|
|
|
|
|
|
```python
|
|
|
|
|
>>> expr.floormod([9., 0.5], [1.2, -3.0])
|
2022-08-31 20:11:16 +08:00
|
|
|
|
array([0.5999994, -2.5])
|
2022-08-23 21:21:29 +08:00
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
---
|
|
|
|
|
### `pow(x, y)`
|
|
|
|
|
返回x的y次方的值
|
|
|
|
|
|
|
|
|
|
参数:
|
|
|
|
|
- `x:Var_like` 输入变量
|
|
|
|
|
- `y:Var_like` 输入变量
|
|
|
|
|
|
|
|
|
|
返回:x的y次方的值
|
|
|
|
|
|
|
|
|
|
返回类型:`Var`
|
|
|
|
|
|
|
|
|
|
示例:
|
|
|
|
|
|
|
|
|
|
```python
|
|
|
|
|
>>> expr.pow([9., 0.5], [1.2, -3.0])
|
2022-08-31 20:11:16 +08:00
|
|
|
|
array([13.966612, 8.])
|
2022-08-23 21:21:29 +08:00
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
---
|
|
|
|
|
### `minimum(x, y)`
|
|
|
|
|
返回输入数中的最小值
|
|
|
|
|
|
|
|
|
|
参数:
|
|
|
|
|
- `x:Var_like` 输入变量
|
|
|
|
|
- `y:Var_like` 输入变量
|
|
|
|
|
|
|
|
|
|
返回:x和y中的最小值
|
|
|
|
|
|
|
|
|
|
返回类型:`Var`
|
|
|
|
|
|
|
|
|
|
示例:
|
|
|
|
|
|
|
|
|
|
```python
|
|
|
|
|
>>> expr.minimum([9., 0.5], [1.2, -3.0])
|
2022-08-31 20:11:16 +08:00
|
|
|
|
array([1.2, -3.])
|
2022-08-23 21:21:29 +08:00
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
---
|
|
|
|
|
### `maximum(x, y)`
|
|
|
|
|
返回输入数中的最大值
|
|
|
|
|
|
|
|
|
|
参数:
|
|
|
|
|
- `x:Var_like` 输入变量
|
|
|
|
|
- `y:Var_like` 输入变量
|
|
|
|
|
|
|
|
|
|
返回:x和y中的最大值
|
|
|
|
|
|
|
|
|
|
返回类型:`Var`
|
|
|
|
|
|
|
|
|
|
示例:
|
|
|
|
|
|
|
|
|
|
```python
|
|
|
|
|
>>> expr.maximum([9., 0.5], [1.2, -3.0])
|
2022-08-31 20:11:16 +08:00
|
|
|
|
array([9., 0.5])
|
2022-08-23 21:21:29 +08:00
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
---
|
|
|
|
|
### `equal(x, y)`
|
|
|
|
|
判断输入数是否相等,相等返回1,不等返回0
|
|
|
|
|
|
|
|
|
|
参数:
|
|
|
|
|
- `x:Var_like` 输入变量
|
|
|
|
|
- `y:Var_like` 输入变量
|
|
|
|
|
|
|
|
|
|
返回:1或0
|
|
|
|
|
|
|
|
|
|
返回类型:`Var`
|
|
|
|
|
|
|
|
|
|
示例:
|
|
|
|
|
|
|
|
|
|
```python
|
|
|
|
|
>>> expr.equal([-9., 0.5], [1.2, 0.5])
|
2022-08-31 20:11:16 +08:00
|
|
|
|
array([0, 1])
|
2022-08-23 21:21:29 +08:00
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
---
|
|
|
|
|
### `not_equal(x, y)`
|
|
|
|
|
判断输入数是否相等,相等返回0,不等返回1
|
|
|
|
|
|
|
|
|
|
参数:
|
|
|
|
|
- `x:Var_like` 输入变量
|
|
|
|
|
- `y:Var_like` 输入变量
|
|
|
|
|
|
|
|
|
|
返回:1或0
|
|
|
|
|
|
|
|
|
|
返回类型:`Var`
|
|
|
|
|
|
|
|
|
|
示例:
|
|
|
|
|
|
|
|
|
|
```python
|
|
|
|
|
>>> expr.not_equal([-9., 0.5], [1.2, 0.5])
|
2022-08-31 20:11:16 +08:00
|
|
|
|
array([1, 0])
|
2022-08-23 21:21:29 +08:00
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
---
|
|
|
|
|
### `greater(x, y)`
|
|
|
|
|
判断输入数x和y的大小,如果x > y返回1,否者返回0
|
|
|
|
|
|
|
|
|
|
参数:
|
|
|
|
|
- `x:Var_like` 输入变量
|
|
|
|
|
- `y:Var_like` 输入变量
|
|
|
|
|
|
|
|
|
|
返回:1或0
|
|
|
|
|
|
|
|
|
|
返回类型:`Var`
|
|
|
|
|
|
|
|
|
|
示例:
|
|
|
|
|
|
|
|
|
|
```python
|
|
|
|
|
>>> expr.greater([-9., 0.5], [1.2, -3.0])
|
2022-08-31 20:11:16 +08:00
|
|
|
|
array([0, 1])
|
2022-08-23 21:21:29 +08:00
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
---
|
|
|
|
|
### `greater_equal(x, y)`
|
|
|
|
|
判断输入数x和y的大小,如果x >= y返回1,否者返回0
|
|
|
|
|
|
|
|
|
|
参数:
|
|
|
|
|
- `x:Var_like` 输入变量
|
|
|
|
|
- `y:Var_like` 输入变量
|
|
|
|
|
|
|
|
|
|
返回:1或0
|
|
|
|
|
|
|
|
|
|
返回类型:`Var`
|
|
|
|
|
|
|
|
|
|
示例:
|
|
|
|
|
|
|
|
|
|
```python
|
|
|
|
|
>>> expr.greater_equal([-9., 0.5], [1.2, -3.0])
|
2022-08-31 20:11:16 +08:00
|
|
|
|
array([0, 1])
|
2022-08-23 21:21:29 +08:00
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
---
|
|
|
|
|
### `less(x, y)`
|
|
|
|
|
判断输入数x和y的大小,如果x < y返回1,否者返回0
|
|
|
|
|
|
|
|
|
|
参数:
|
|
|
|
|
- `x:Var_like` 输入变量
|
|
|
|
|
- `y:Var_like` 输入变量
|
|
|
|
|
|
|
|
|
|
返回:1或0
|
|
|
|
|
|
|
|
|
|
返回类型:`Var`
|
|
|
|
|
|
|
|
|
|
示例:
|
|
|
|
|
|
|
|
|
|
```python
|
|
|
|
|
>>> expr.less([-9., 0.5], [1.2, -3.0])
|
2022-08-31 20:11:16 +08:00
|
|
|
|
array([1, 0])
|
2022-08-23 21:21:29 +08:00
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
---
|
|
|
|
|
### `less_equal(x, y)`
|
|
|
|
|
判断输入数x和y的大小,如果x <= y返回1,否者返回0
|
|
|
|
|
|
|
|
|
|
参数:
|
|
|
|
|
- `x:Var_like` 输入变量
|
|
|
|
|
- `y:Var_like` 输入变量
|
|
|
|
|
|
|
|
|
|
返回:1或0
|
|
|
|
|
|
|
|
|
|
返回类型:`Var`
|
|
|
|
|
|
|
|
|
|
示例:
|
|
|
|
|
|
|
|
|
|
```python
|
|
|
|
|
>>> expr.less_equal([-9., 0.5], [1.2, -3.0])
|
2022-08-31 20:11:16 +08:00
|
|
|
|
array([1, 0])
|
2022-08-23 21:21:29 +08:00
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
---
|
|
|
|
|
### `squared_difference(x, y)`
|
|
|
|
|
返回输入数x和输入数y的差的平方值
|
|
|
|
|
|
|
|
|
|
参数:
|
|
|
|
|
- `x:Var_like` 输入变量
|
|
|
|
|
- `y:Var_like` 输入变量
|
|
|
|
|
|
|
|
|
|
返回:(x - y)^2
|
|
|
|
|
|
|
|
|
|
返回类型:`Var`
|
|
|
|
|
|
|
|
|
|
示例:
|
|
|
|
|
|
|
|
|
|
```python
|
|
|
|
|
>>> expr.squared_difference([-9., 0.5], [1.2, -3.0])
|
2022-08-31 20:11:16 +08:00
|
|
|
|
array([104.03999, 12.25])
|
2022-08-23 21:21:29 +08:00
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
---
|
|
|
|
|
### `atan2(x, y)`
|
|
|
|
|
返回 x / y 的反正切值,别名arctan2
|
|
|
|
|
|
|
|
|
|
参数:
|
|
|
|
|
- `x:Var_like` 输入变量
|
|
|
|
|
- `y:Var_like` 输入变量
|
|
|
|
|
|
|
|
|
|
返回:arctan(x / y)的值
|
|
|
|
|
|
|
|
|
|
返回类型:`Var`
|
|
|
|
|
|
|
|
|
|
示例:
|
|
|
|
|
|
|
|
|
|
```python
|
|
|
|
|
>>> expr.atan2([-9., 0.5], [1.2, -3.0])
|
2022-08-31 20:11:16 +08:00
|
|
|
|
array([-1.4382448, -0.16514869])
|
2022-08-23 21:21:29 +08:00
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
---
|
|
|
|
|
### `logical_or(x, y)`
|
|
|
|
|
返回输入数的“或”逻辑的值,x和y形状相同,返回1,否则返回0
|
|
|
|
|
|
|
|
|
|
参数:
|
|
|
|
|
- `x:Var_like` 输入变量,仅支持int32
|
|
|
|
|
- `y:Var_like` 输入变量,仅支持int32
|
|
|
|
|
|
|
|
|
|
返回:1或0
|
|
|
|
|
|
|
|
|
|
返回类型:`Var`
|
|
|
|
|
|
|
|
|
|
示例:
|
|
|
|
|
|
|
|
|
|
```python
|
|
|
|
|
>>> expr.logical_or([2, 1], [4, 2])
|
2022-08-31 20:11:16 +08:00
|
|
|
|
array([1, 1])
|
2022-08-23 21:21:29 +08:00
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
---
|
|
|
|
|
### `bias_add(value, bias)`
|
|
|
|
|
这(主要)是加法的一个特殊情况,其中偏差限制在1-D,value可以有任意数量的维度,与加法不同,在量子化的情况下,偏差的类型允许与值不同。
|
|
|
|
|
|
|
|
|
|
参数:
|
|
|
|
|
- `value` 输入变量,dtype.float或者dtype.int类型
|
|
|
|
|
- `bias` 输入变量,一个一维变量,其大小与值的通道维度相匹配,必须与值的类型相同,除非值是量化类型,在这种情况下可以使用不同的量化类型。
|
|
|
|
|
|
|
|
|
|
返回:与value类型相同的变量
|
|
|
|
|
|
|
|
|
|
返回类型:`Var`
|
|
|
|
|
|
|
|
|
|
示例:
|
|
|
|
|
|
|
|
|
|
```python
|
|
|
|
|
>>> expr.bias_add(np.eye(3,3), np.ones(3))
|
2022-08-31 20:11:16 +08:00
|
|
|
|
array([[2., 1., 1.],
|
|
|
|
|
[1., 2., 1.],
|
|
|
|
|
[1., 1., 2.]], dtype=float32)
|
2022-08-23 21:21:29 +08:00
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
---
|
|
|
|
|
### `bitwise_and(x, y)`
|
|
|
|
|
返回输入数的“与”运算的值(x & y,x, y必须为dtype.int32
|
|
|
|
|
|
|
|
|
|
参数:
|
|
|
|
|
- `x:Var_like` 输入变量,仅支持int32
|
|
|
|
|
- `y:Var_like` 输入变量,仅支持int32
|
|
|
|
|
|
|
|
|
|
返回:1或0
|
|
|
|
|
|
|
|
|
|
返回类型:`Var`
|
|
|
|
|
|
|
|
|
|
示例:
|
|
|
|
|
|
|
|
|
|
```python
|
|
|
|
|
>>> expr.bitwise_and([1, 2], [3, 4])
|
2022-08-31 20:11:16 +08:00
|
|
|
|
array([1, 0])
|
2022-08-23 21:21:29 +08:00
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
---
|
|
|
|
|
### `bitwise_or(x, y)`
|
|
|
|
|
返回输入数的“或”运算的值(x | y),x, y必须为dtype.int32
|
|
|
|
|
|
|
|
|
|
参数:
|
|
|
|
|
- `x:Var_like` 输入变量,仅支持int32
|
|
|
|
|
- `y:Var_like` 输入变量,仅支持int32
|
|
|
|
|
|
|
|
|
|
返回:x | y
|
|
|
|
|
|
|
|
|
|
返回类型:`Var`
|
|
|
|
|
|
|
|
|
|
示例:
|
|
|
|
|
|
|
|
|
|
```python
|
|
|
|
|
>>> expr.bitwise_or([1, 2], [3, 4])
|
2022-08-31 20:11:16 +08:00
|
|
|
|
array([3, 6])
|
2022-08-23 21:21:29 +08:00
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
---
|
|
|
|
|
### `bitwise_xor(x, y)`
|
|
|
|
|
返回输入数的“异或”运算的值(x ^ y),x, y必须为dtype.int32
|
|
|
|
|
|
|
|
|
|
参数:
|
|
|
|
|
- `x:Var_like` 输入变量,仅支持int32
|
|
|
|
|
- `y:Var_like` 输入变量,仅支持int32
|
|
|
|
|
|
|
|
|
|
返回:x ^ y
|
|
|
|
|
|
|
|
|
|
返回类型:`Var`
|
|
|
|
|
|
|
|
|
|
示例:
|
|
|
|
|
|
|
|
|
|
```python
|
|
|
|
|
>>> expr.bitwise_xor([1, 2], [3, 4])
|
2022-08-31 20:11:16 +08:00
|
|
|
|
array([2, 6])
|
2022-08-23 21:21:29 +08:00
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
---
|
|
|
|
|
### `reduce_sum(x, axis=[], keepdims=False)`
|
|
|
|
|
计算张量x沿着指定的数轴(x的某一维度)上的和
|
|
|
|
|
|
|
|
|
|
参数:
|
|
|
|
|
- `x:Var_like` 输入变量
|
|
|
|
|
- `axis : axis_like` 仅支持int32,默认为[],指定按哪个维度进行加和,默认将所有元素进行加和
|
|
|
|
|
- `keepdims : bool` 默认为false,表示不维持原来张量的维度,反之维持原张量维度
|
|
|
|
|
|
|
|
|
|
返回:x沿着指定的数轴(x的某一维度)上的和
|
|
|
|
|
|
|
|
|
|
返回类型:`Var`
|
|
|
|
|
|
|
|
|
|
示例:
|
|
|
|
|
|
|
|
|
|
```python
|
|
|
|
|
>>> expr.reduce_sum([[1.,2.],[3.,4.]])
|
2022-08-31 20:11:16 +08:00
|
|
|
|
array(10.)
|
2022-08-23 21:21:29 +08:00
|
|
|
|
>>> expr.reduce_sum([[1.,2.],[3.,4.]], 0)
|
2022-08-31 20:11:16 +08:00
|
|
|
|
array([4., 6.])
|
2022-08-23 21:21:29 +08:00
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
---
|
|
|
|
|
### `reduce_mean(x, axis=[], keepdims=False)`
|
|
|
|
|
计算张量x沿着指定的数轴(x的某一维度)上的平均值
|
|
|
|
|
|
|
|
|
|
参数:
|
|
|
|
|
- `x:Var_like` 输入变量
|
|
|
|
|
- `axis : axis_like` 仅支持int32,默认为[],指定按哪个维度进行加和,默认将所有元素进行加和
|
|
|
|
|
- `keepdims : bool` 默认为false,表示不维持原来张量的维度,反之维持原张量维度
|
|
|
|
|
|
|
|
|
|
返回:x沿着指定的数轴(x的某一维度)上的平均值
|
|
|
|
|
|
|
|
|
|
返回类型:`Var`
|
|
|
|
|
|
|
|
|
|
示例:
|
|
|
|
|
|
|
|
|
|
```python
|
|
|
|
|
>>> expr.reduce_mean([[1.,2.],[3.,4.]])
|
2022-08-31 20:11:16 +08:00
|
|
|
|
array(2.5.)
|
2022-08-23 21:21:29 +08:00
|
|
|
|
>>> expr.reduce_mean([[1.,2.],[3.,4.]], 0)
|
2022-08-31 20:11:16 +08:00
|
|
|
|
array([2., 3.])
|
2022-08-23 21:21:29 +08:00
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
---
|
|
|
|
|
### `reduce_max(x, axis=[], keepdims=False)`
|
|
|
|
|
计算x沿着指定的数轴(x的某一维度)上的最大值
|
|
|
|
|
|
|
|
|
|
参数:
|
|
|
|
|
- `x:Var_like` 输入变量
|
|
|
|
|
- `axis : axis_like` 仅支持int32,默认为[],指定按哪个维度进行加和,默认将所有元素进行加和
|
|
|
|
|
- `keepdims : bool` 默认为false,表示不维持原来张量的维度,反之维持原张量维度
|
|
|
|
|
|
|
|
|
|
返回:x沿着指定的数轴(x的某一维度)上的最大值
|
|
|
|
|
|
|
|
|
|
返回类型:`Var`
|
|
|
|
|
|
|
|
|
|
示例:
|
|
|
|
|
|
|
|
|
|
```python
|
|
|
|
|
>>> expr.reduce_max([[1.,2.],[3.,4.]])
|
2022-08-31 20:11:16 +08:00
|
|
|
|
array(4.)
|
2022-08-23 21:21:29 +08:00
|
|
|
|
>>> expr.reduce_max([[1.,2.],[3.,4.]], 0)
|
2022-08-31 20:11:16 +08:00
|
|
|
|
array([3., 4.])
|
2022-08-23 21:21:29 +08:00
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
---
|
|
|
|
|
### `reduce_min(x, axis=[], keepdims=False)`
|
|
|
|
|
计算x沿着指定的数轴(x的某一维度)上的最小值
|
|
|
|
|
|
|
|
|
|
参数:
|
|
|
|
|
- `x:Var_like` 输入变量
|
|
|
|
|
- `axis : axis_like` 仅支持int32,默认为[],指定按哪个维度进行加和,默认将所有元素进行加和
|
|
|
|
|
- `keepdims : bool` 默认为false,表示不维持原来张量的维度,反之维持原张量维度
|
|
|
|
|
|
|
|
|
|
返回:x沿着指定的数轴(x的某一维度)上的最小值
|
|
|
|
|
|
|
|
|
|
返回类型:`Var`
|
|
|
|
|
|
|
|
|
|
示例:
|
|
|
|
|
|
|
|
|
|
```python
|
|
|
|
|
>>> expr.reduce_min([[1.,2.],[3.,4.]])
|
2022-08-31 20:11:16 +08:00
|
|
|
|
array(1.)
|
2022-08-23 21:21:29 +08:00
|
|
|
|
>>> expr.reduce_min([[1.,2.],[3.,4.]], 0)
|
2022-08-31 20:11:16 +08:00
|
|
|
|
array([1., 2.])
|
2022-08-23 21:21:29 +08:00
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
---
|
|
|
|
|
### `reduce_prod(x, axis=[], keepdims=False)`
|
|
|
|
|
计算x沿着指定的数轴(x的某一维度)上的乘积
|
|
|
|
|
|
|
|
|
|
参数:
|
|
|
|
|
- `x:Var_like` 输入变量
|
|
|
|
|
- `axis : axis_like` 仅支持int32,默认为[],指定按哪个维度进行加和,默认将所有元素进行加和
|
|
|
|
|
- `keepdims : bool` 默认为false,表示不维持原来张量的维度,反之维持原张量维度
|
|
|
|
|
|
|
|
|
|
返回:x沿着指定的数轴(x的某一维度)上的乘积
|
|
|
|
|
|
|
|
|
|
返回类型:`Var`
|
|
|
|
|
|
|
|
|
|
示例:
|
|
|
|
|
|
|
|
|
|
```python
|
|
|
|
|
>>> expr.reduce_prod([[1.,2.],[3.,4.]])
|
2022-08-31 20:11:16 +08:00
|
|
|
|
array(24.)
|
2022-08-23 21:21:29 +08:00
|
|
|
|
>>> expr.reduce_prod([[1.,2.],[3.,4.]], 0)
|
2022-08-31 20:11:16 +08:00
|
|
|
|
array([3., 8.])
|
2022-08-23 21:21:29 +08:00
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
---
|
|
|
|
|
### `reduce_any(x, axis=[], keepdims=False)`
|
|
|
|
|
计算x沿着指定的数轴(x的某一维度)上的“逻辑或”的值
|
|
|
|
|
|
|
|
|
|
参数:
|
|
|
|
|
- `x:Var_like` 输入变量
|
|
|
|
|
- `axis : axis_like` 仅支持int32,默认为[],指定按哪个维度进行加和,默认将所有元素进行加和
|
|
|
|
|
- `keepdims : bool` 默认为false,表示不维持原来张量的维度,反之维持原张量维度
|
|
|
|
|
|
|
|
|
|
返回:x沿着指定的数轴(x的某一维度)上的“逻辑或”的值
|
|
|
|
|
|
|
|
|
|
返回类型:`Var`
|
|
|
|
|
|
|
|
|
|
示例:
|
|
|
|
|
|
|
|
|
|
```python
|
|
|
|
|
>>> expr.reduce_any([[0,1],[0,3]])
|
2022-08-31 20:11:16 +08:00
|
|
|
|
array(1)
|
2022-08-23 21:21:29 +08:00
|
|
|
|
>>> expr.reduce_any([[0,1],[0,3]], 1)
|
2022-08-31 20:11:16 +08:00
|
|
|
|
array([0, 1])
|
2022-08-23 21:21:29 +08:00
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
---
|
|
|
|
|
### `reduce_all(x, axis=[], keepdims=False)`
|
|
|
|
|
计算x沿着指定的数轴(x的某一维度)上的“逻辑和”的值
|
|
|
|
|
|
|
|
|
|
参数:
|
|
|
|
|
- `x:Var_like` 输入变量
|
|
|
|
|
- `axis : axis_like` 仅支持int32,默认为[],指定按哪个维度进行加和,默认将所有元素进行加和
|
|
|
|
|
- `keepdims : bool` 默认为false,表示不维持原来张量的维度,反之维持原张量维度
|
|
|
|
|
|
|
|
|
|
返回:x沿着指定的数轴(x的某一维度)上的“逻辑和”的值
|
|
|
|
|
|
|
|
|
|
返回类型:`Var`
|
|
|
|
|
|
|
|
|
|
示例:
|
|
|
|
|
|
|
|
|
|
```python
|
|
|
|
|
>>> expr.reduce_all([[0,1],[0,3]])
|
2022-08-31 20:11:16 +08:00
|
|
|
|
array(0)
|
2022-08-23 21:21:29 +08:00
|
|
|
|
>>> expr.reduce_all([[0,1],[0,3]], 0)
|
2022-08-31 20:11:16 +08:00
|
|
|
|
array([0, 1])
|
2022-08-23 21:21:29 +08:00
|
|
|
|
```
|
|
|
|
|
|
2022-09-30 10:02:52 +08:00
|
|
|
|
---
|
|
|
|
|
### `eltwise_prod(x, y, coeff)`
|
|
|
|
|
逐元素对输入的变量执行乘法运算
|
|
|
|
|
|
|
|
|
|
参数:
|
|
|
|
|
- `x:Var_like` 输入变量
|
|
|
|
|
- `y:Var_like` 输入变量
|
|
|
|
|
- `coeff:[float]` 系数,目前仅支持`[1.,0.]`或`[]/[0.]`
|
|
|
|
|
|
|
|
|
|
返回:`x*y`, 当`coeff=[1.,0.]`时返回`x`
|
|
|
|
|
|
|
|
|
|
返回类型:`Var`
|
|
|
|
|
|
|
|
|
|
示例:
|
|
|
|
|
|
|
|
|
|
```python
|
|
|
|
|
>>> expr.eltwise_prod([1., 2., 3.], [2., 2., 2.], [])
|
|
|
|
|
array([2., 4., 6.], dtype=float32)
|
|
|
|
|
>>> expr.eltwise_prod([1., 2., 3.], [2., 2., 2.], [1., 0.])
|
|
|
|
|
array([1., 2., 3.], dtype=float32)
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
---
|
|
|
|
|
### `eltwise_sum(x, y, coeff)`
|
|
|
|
|
逐元素对输入的变量执行加法运算
|
|
|
|
|
|
|
|
|
|
参数:
|
|
|
|
|
- `x:Var_like` 输入变量
|
|
|
|
|
- `y:Var_like` 输入变量
|
|
|
|
|
- `coeff:[float]` 系数,目前仅支持`[1.,0.]`或`[]/[0.]`
|
|
|
|
|
|
|
|
|
|
返回:`x+y`, 当`coeff=[1.,0.]`时返回`x`
|
|
|
|
|
|
|
|
|
|
返回类型:`Var`
|
|
|
|
|
|
|
|
|
|
示例:
|
|
|
|
|
|
|
|
|
|
```python
|
|
|
|
|
>>> expr.eltwise_sum([1., 2., 3.], [2., 2., 2.], [])
|
|
|
|
|
array([3., 4., 5.], dtype=float32)
|
|
|
|
|
>>> expr.eltwise_sum([1., 2., 3.], [2., 2., 2.], [1., 0.])
|
|
|
|
|
array([1., 2., 3.], dtype=float32)
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
---
|
|
|
|
|
### `eltwise_sub(x, y, coeff)`
|
|
|
|
|
逐元素对输入的变量执行减法运算
|
|
|
|
|
|
|
|
|
|
参数:
|
|
|
|
|
- `x:Var_like` 输入变量
|
|
|
|
|
- `y:Var_like` 输入变量
|
|
|
|
|
- `coeff:[float]` 系数,目前仅支持`[1.,0.]`或`[]/[0.]`
|
|
|
|
|
|
|
|
|
|
返回:`x-y`, 当`coeff=[1.,0.]`时返回`x`
|
|
|
|
|
|
|
|
|
|
返回类型:`Var`
|
|
|
|
|
|
|
|
|
|
示例:
|
|
|
|
|
|
|
|
|
|
```python
|
|
|
|
|
>>> expr.eltwise_sub([1., 2., 3.], [2., 2., 2.], [])
|
|
|
|
|
array([-1., 0., 1.], dtype=float32)
|
|
|
|
|
>>> expr.eltwise_sub([1., 2., 3.], [2., 2., 2.], [1., 0.])
|
|
|
|
|
array([1., 2., 3.], dtype=float32)
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
---
|
|
|
|
|
### `eltwise_max(x, y, coeff)`
|
|
|
|
|
逐元素对输入的变量执行比较运算,取最大值
|
|
|
|
|
|
|
|
|
|
参数:
|
|
|
|
|
- `x:Var_like` 输入变量
|
|
|
|
|
- `y:Var_like` 输入变量
|
|
|
|
|
- `coeff:[float]` 系数,目前仅支持`[1.,0.]`或`[]/[0.]`
|
|
|
|
|
|
|
|
|
|
返回:`max(x,y)`, 当`coeff=[1.,0.]`时返回`x`
|
|
|
|
|
|
|
|
|
|
返回类型:`Var`
|
|
|
|
|
|
|
|
|
|
示例:
|
|
|
|
|
|
|
|
|
|
```python
|
|
|
|
|
>>> expr.eltwise_max([1., 2., 3.], [2., 2., 2.], [])
|
|
|
|
|
array([2., 2., 3.], dtype=float32)
|
|
|
|
|
>>> expr.eltwise_max([1., 2., 3.], [2., 2., 2.], [1., 0.])
|
|
|
|
|
array([1., 2., 3.], dtype=float32)
|
|
|
|
|
```
|
|
|
|
|
|
2022-08-23 21:21:29 +08:00
|
|
|
|
---
|
|
|
|
|
### `cast(x, dtype=_F.float)`
|
|
|
|
|
返回输入数的dtype
|
|
|
|
|
|
|
|
|
|
参数:
|
|
|
|
|
- `x:Var_like` 输入变量
|
|
|
|
|
- `dtype` 默认是float类型
|
|
|
|
|
|
|
|
|
|
返回:x的dtype
|
|
|
|
|
|
|
|
|
|
返回类型:`Var`
|
|
|
|
|
|
|
|
|
|
示例:
|
|
|
|
|
|
|
|
|
|
```python
|
|
|
|
|
>>> expr.cast([[0,1],[0,3]], float)
|
2022-08-31 20:11:16 +08:00
|
|
|
|
array([[0., 1.],
|
|
|
|
|
[0., 3.]], dtype=float32)
|
2022-08-23 21:21:29 +08:00
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
---
|
|
|
|
|
### `matmul(a, b, transposeA=False, transposeB=False)`
|
|
|
|
|
返回两个数组的矩阵乘积
|
|
|
|
|
|
|
|
|
|
参数:
|
|
|
|
|
- `a:Var_like` 输入变量
|
|
|
|
|
- `b:Var_like` 输入变量
|
|
|
|
|
- `transposeA` 布尔值,用于判定a是否为转置矩阵,默认为false
|
|
|
|
|
- `transposeB` 布尔值,用于判定b是否为转置矩阵,默认为false
|
|
|
|
|
|
|
|
|
|
返回:a @ b 的值,dtype是float32
|
|
|
|
|
|
|
|
|
|
返回类型:`Var`
|
|
|
|
|
|
|
|
|
|
示例:
|
|
|
|
|
|
|
|
|
|
```python
|
|
|
|
|
>>> expr.matmul([[1,2],[3,4]], [[1,1],[2,2]])
|
2022-08-31 20:11:16 +08:00
|
|
|
|
array([[0., 1.],
|
|
|
|
|
[0., 3.]], dtype=float32)
|
2022-08-23 21:21:29 +08:00
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
---
|
|
|
|
|
### `normalize(x, acrossSpatial, channelShared, eps, scale)`
|
|
|
|
|
返回x数据转换成指定的标准化的格式
|
|
|
|
|
|
|
|
|
|
参数:
|
|
|
|
|
- `a:Var_like` 输入变量
|
|
|
|
|
- `acrossSpatial` 输入变量,int类型
|
|
|
|
|
- `channelShared` 输入变量,int类型
|
|
|
|
|
- `eps` 输入变量,float类型,data_format
|
|
|
|
|
- `scale` 输入变量,[float]
|
|
|
|
|
|
|
|
|
|
返回:x数据转换成指定的标准化的格式
|
|
|
|
|
|
|
|
|
|
返回类型:`Var`
|
|
|
|
|
|
|
|
|
|
示例:
|
|
|
|
|
|
|
|
|
|
```python
|
|
|
|
|
>>> x = expr.const([-1.0, -2.0, 3.0, 4.0], [1, 2, 2, 1], expr.NCHW)
|
|
|
|
|
>>> expr.normalize(x, 0, 0, 0.0, [0.5, 0.5])
|
2022-08-31 20:11:16 +08:00
|
|
|
|
array([[[[-0.2236068],
|
|
|
|
|
[-0.4472136]],
|
|
|
|
|
[[ 0.3 ],
|
|
|
|
|
[ 0.4 ]]]], dtype=float32)
|
2022-08-23 21:21:29 +08:00
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
---
|
|
|
|
|
### `argmax(x, axis=0)`
|
|
|
|
|
返回数据最大值的索引,根据axis判断返回的是行还是列的最大值索引
|
|
|
|
|
|
|
|
|
|
参数:
|
|
|
|
|
- `x:Var_like` 输入变量
|
|
|
|
|
- `axis` 输入变量,int类型,默认为0,当值为0时则按照每一列操作,为1时按照每一行操作
|
|
|
|
|
|
|
|
|
|
返回:x最大值的索引
|
|
|
|
|
|
|
|
|
|
返回类型:`Var`
|
|
|
|
|
|
|
|
|
|
示例:
|
|
|
|
|
|
|
|
|
|
```python
|
|
|
|
|
>>> expr.argmax([[1,2],[3,4]])
|
2022-08-31 20:11:16 +08:00
|
|
|
|
array([1, 1], dtype=int32)
|
2022-08-23 21:21:29 +08:00
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
---
|
|
|
|
|
### `argmin(x, axis=0)`
|
|
|
|
|
返回数据最小值的索引,根据axis判断返回的是行还是列的最小值索引
|
|
|
|
|
|
|
|
|
|
参数:
|
|
|
|
|
- `x:Var_like` 输入变量
|
|
|
|
|
- `axis` 输入变量,int类型,默认为0,0代表列,1代表行
|
|
|
|
|
|
|
|
|
|
返回:x最小值的索引
|
|
|
|
|
|
|
|
|
|
返回类型:`Var`
|
|
|
|
|
|
|
|
|
|
示例:
|
|
|
|
|
|
|
|
|
|
```python
|
|
|
|
|
>>> expr.argmax([[1,2],[3,4]])
|
2022-08-31 20:11:16 +08:00
|
|
|
|
array([1, 1], dtype=int32)
|
2022-08-23 21:21:29 +08:00
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
---
|
|
|
|
|
### `cumsum(x, axis=0)`
|
|
|
|
|
返回给定axis上的累计和,如果axis == 0,行一不变,行二累加,以此类推;axis == 1,列一不变,列二累加,以此类推
|
|
|
|
|
|
|
|
|
|
参数:
|
|
|
|
|
- `x:Var_like` 输入变量
|
|
|
|
|
- `axis` 输入变量,int类型,默认为0,0代表列,1代表行
|
|
|
|
|
|
|
|
|
|
返回:x在给定axis上的累计和
|
|
|
|
|
|
|
|
|
|
返回类型:`Var`
|
|
|
|
|
|
|
|
|
|
示例:
|
|
|
|
|
|
|
|
|
|
```python
|
|
|
|
|
>>> expr.cumsum([[1,2],[3,4]])
|
2022-08-31 20:11:16 +08:00
|
|
|
|
array([[1, 2],
|
|
|
|
|
[4, 6]], dtype=int32)
|
2022-08-23 21:21:29 +08:00
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
---
|
|
|
|
|
### `cumprod(x, axis=0)`
|
|
|
|
|
返回给定axis上的累计乘积,如果axis == 0,行一不变,行二累计相乘,以此类推;axis == 1,列一不变,列二累计相乘,以此类推
|
|
|
|
|
|
|
|
|
|
参数:
|
|
|
|
|
- `x:Var_like` 输入变量
|
|
|
|
|
- `axis` 输入变量,int类型,默认为0,0代表列,1代表行
|
|
|
|
|
|
|
|
|
|
返回:x在给定axis上的累计乘积
|
|
|
|
|
|
|
|
|
|
返回类型:`Var`
|
|
|
|
|
|
|
|
|
|
示例:
|
|
|
|
|
|
|
|
|
|
```python
|
|
|
|
|
>>> expr.cumprod([[1.,2.],[3.,4.]])
|
2022-08-31 20:11:16 +08:00
|
|
|
|
array([[1., 2.],
|
|
|
|
|
[3., 8.]], dtype=float32)
|
2022-08-23 21:21:29 +08:00
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
---
|
|
|
|
|
### `svd(x)`
|
|
|
|
|
返回'x'的svd矩阵,'x'是一个2D矩阵。
|
|
|
|
|
返回'w','u','vt'为 a = u @ w @ vt。
|
|
|
|
|
|
|
|
|
|
参数:
|
|
|
|
|
- `x:Var_like` 输入变量
|
|
|
|
|
|
|
|
|
|
返回:w : 形状是 (N).
|
|
|
|
|
u : 形状是 (M, N).
|
|
|
|
|
vt : 形状是 (N, N).
|
|
|
|
|
|
|
|
|
|
返回类型:`Var`
|
|
|
|
|
|
|
|
|
|
示例:
|
|
|
|
|
|
|
|
|
|
```python
|
|
|
|
|
>>> expr.cumprod([[1.,2.],[3.,4.]])
|
2022-08-31 20:11:16 +08:00
|
|
|
|
[array([5.464986 , 0.36596605], dtype=float32), array([[ 0.40455356, 0.91451436],
|
|
|
|
|
[ 0.91451424, -0.40455365]], dtype=float32), array([[ 0.5760485 , 0.81741554],
|
2022-08-23 21:21:29 +08:00
|
|
|
|
[-0.81741554, 0.5760485 ]], dtype=float32)]
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
---
|
|
|
|
|
### `unravel_index(indices, shape)`
|
|
|
|
|
求出数组某元素(或某组元素)拉成一维后的索引值在原本维度(或指定新维度)中对应的索引
|
|
|
|
|
|
|
|
|
|
参数:
|
|
|
|
|
- `indices:Var_like` 输入变量,int32构成的数组, 其中元素是索引值
|
|
|
|
|
- `shape:Var_like` 输入变量,一般是原本数组的维度,也可以给定的新维度
|
|
|
|
|
|
|
|
|
|
返回:索引
|
|
|
|
|
|
|
|
|
|
返回类型:`Var`
|
|
|
|
|
|
|
|
|
|
示例:
|
|
|
|
|
|
|
|
|
|
```python
|
|
|
|
|
>>> expr.unravel_index([22, 41, 37], (7,6))
|
2022-08-31 20:11:16 +08:00
|
|
|
|
array([[3, 6, 6],
|
|
|
|
|
[4, 5, 1]], dtype=int32)
|
2022-08-23 21:21:29 +08:00
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
---
|
|
|
|
|
### `scatter_nd(indices, updates, shape)`
|
|
|
|
|
根据indices将updates散布到新的(初始为零)张量
|
|
|
|
|
|
|
|
|
|
参数:
|
|
|
|
|
- `indices:Var_like` 输入变量,指数张量
|
|
|
|
|
- `updates:Var_like` 输入变量,分散到输出的更新
|
|
|
|
|
- `shape:Var_like` 输入变量,得到的张量的形状
|
|
|
|
|
|
|
|
|
|
返回:(初始为零)张量
|
|
|
|
|
|
|
|
|
|
返回类型:`Var`
|
|
|
|
|
|
|
|
|
|
示例:
|
|
|
|
|
|
|
|
|
|
```python
|
|
|
|
|
>>> indices = expr.const([4, 3, 1, 7], [4, 1], expr.NHWC, expr.int)
|
|
|
|
|
>>> expr.scatter_nd(indices, [9.0, 10.0, 11.0, 12.0], [8])
|
2022-08-31 20:11:16 +08:00
|
|
|
|
array([ 0., 11., 0., 10., 9., 0., 0., 12.], dtype=float32)
|
2022-08-23 21:21:29 +08:00
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
---
|
|
|
|
|
### `one_hot(indices, depth, onValue=1.0, offValue=0.0, axis=-1)`
|
|
|
|
|
转换成one_hot类型的张量输出
|
|
|
|
|
|
|
|
|
|
参数:
|
|
|
|
|
- `indices: Var_like` 输入变量,指示on_value的位置,不指示的地方都为off_value。indices可以是向量、矩阵。
|
|
|
|
|
- `depth: int` 输入变量,输出张量的尺寸,indices中元素默认不超过(depth-1),如果超过,输出为[0,0,···,0]
|
|
|
|
|
- `onValue: float` 输入变量,定义在indices[j] = i 时填充输出值的标量,默认为1
|
|
|
|
|
- `offValue: float` 输入变量,定义在indices[j] != i 时填充输出值的标量,默认为0
|
|
|
|
|
- `axis: int` 输入变量,要填充的轴,默认为-1,即一个新的最内层轴
|
|
|
|
|
|
|
|
|
|
返回:one_hot类型的张量输出
|
|
|
|
|
|
|
|
|
|
返回类型:`Var`
|
|
|
|
|
|
|
|
|
|
示例:
|
|
|
|
|
|
|
|
|
|
```python
|
|
|
|
|
>>> expr.one_hot([0, 1, 2], 3)
|
2022-08-31 20:11:16 +08:00
|
|
|
|
array([[1., 0., 0.],
|
|
|
|
|
[0., 1., 0.],
|
|
|
|
|
[0., 0., 1.]], dtype=float32)
|
2022-08-23 21:21:29 +08:00
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
---
|
|
|
|
|
### `broadcast_to(input, shape)`
|
|
|
|
|
利用广播将原始矩阵成倍增加
|
|
|
|
|
|
|
|
|
|
参数:
|
|
|
|
|
- `input: Var_like` 输入变量,一个张量,广播的张量
|
|
|
|
|
- `shape: int` 输入变量,一个一维的int32张量,期望输出的形状
|
|
|
|
|
|
|
|
|
|
返回:成倍增加的原始矩阵
|
|
|
|
|
|
|
|
|
|
返回类型:`Var`
|
|
|
|
|
|
|
|
|
|
示例:
|
|
|
|
|
|
|
|
|
|
```python
|
|
|
|
|
>>> expr.broadcast_to([1,2], 4)
|
2022-08-31 20:11:16 +08:00
|
|
|
|
array([1, 2, 1571999095, -536868871], dtype=int32)
|
2022-08-23 21:21:29 +08:00
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
---
|
|
|
|
|
### `placeholder(shape=[], format=_F.NCHW, dtype=_F.float)`
|
|
|
|
|
构建一个Var类型的占位符
|
|
|
|
|
|
|
|
|
|
参数:
|
|
|
|
|
- `shape: [int]` 输入变量,默认是[]
|
|
|
|
|
- `format: data_format` 输入变量,默认是NCHW
|
|
|
|
|
- `dtype: dtype` 输入变量,默认是float
|
|
|
|
|
|
|
|
|
|
返回:Var类型的占位符,使用之前需先`write`
|
|
|
|
|
|
|
|
|
|
返回类型:`Var`
|
|
|
|
|
|
|
|
|
|
示例:
|
|
|
|
|
|
|
|
|
|
```python
|
|
|
|
|
>>> expr.placeholder()
|
2022-08-31 20:11:16 +08:00
|
|
|
|
array(1., dtype=float32)
|
2022-08-23 21:21:29 +08:00
|
|
|
|
>>> expr.placeholder([2,2])
|
2022-08-31 20:11:16 +08:00
|
|
|
|
array([[1.67e-43, 1.60e-43],
|
|
|
|
|
[1.36e-43, 1.54e-43]], dtype=float32)
|
2022-08-23 21:21:29 +08:00
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
---
|
|
|
|
|
### `clone(x, deepCopy=False)`
|
2022-08-31 20:11:16 +08:00
|
|
|
|
克隆一个`Var`
|
2022-08-23 21:21:29 +08:00
|
|
|
|
|
|
|
|
|
参数:
|
|
|
|
|
- `x: Var_like` 输入变量
|
|
|
|
|
- `deepCopy: bool` 输入变量,true代表深拷贝,false代表浅拷贝,默认为false
|
|
|
|
|
|
|
|
|
|
返回:通过x拷贝一个Var
|
|
|
|
|
|
|
|
|
|
返回类型:`Var`
|
|
|
|
|
|
|
|
|
|
示例:
|
|
|
|
|
|
|
|
|
|
```python
|
|
|
|
|
>>> x = expr.const([1.,2.], [2])
|
|
|
|
|
>>> expr.clone(x, True)
|
2022-08-31 20:11:16 +08:00
|
|
|
|
array([1., 2.], dtype=float32)
|
2022-08-23 21:21:29 +08:00
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
---
|
|
|
|
|
### `conv2d(input, weight, bias, stride=(1,1), padding=(0,0), dilate=(1,1), group=1, padding_mode=_F.VALID)`
|
|
|
|
|
对由多个输入平面组成的输入信号进行二维卷积
|
|
|
|
|
|
|
|
|
|
参数:
|
|
|
|
|
- `input: var_like` 输入变量,data_format为NC4HW4,输入图像通道数
|
|
|
|
|
- `weight: var_like` 输入变量,卷积产生的通道数
|
|
|
|
|
- `bias: var_like` 输入变量,在输出中添加一个可学习的偏差
|
|
|
|
|
- `stride: tuple of int` 输入变量,卷积步长,默认为(1,1)
|
|
|
|
|
- `padding: tuple of int` 输入变量,填充操作,控制padding_mode的数目
|
|
|
|
|
- `dilate: tuple of int` 输入变量,扩张操作:控制kernel点(卷积核点)的间距,默认值为(1,1)
|
|
|
|
|
- `group: int` 输入变量,控制分组卷积,默认不分组,为1组
|
|
|
|
|
- `padding_mode: Padding_Mode` 输入变量,填充模式,默认是VALID
|
|
|
|
|
|
|
|
|
|
返回:二维卷积
|
|
|
|
|
|
|
|
|
|
返回类型:`Var`
|
|
|
|
|
|
|
|
|
|
示例:
|
|
|
|
|
|
|
|
|
|
```python
|
|
|
|
|
>>> x = expr.reshape(expr.range(0., 18., 1.), [1, 2, 3, 3])
|
|
|
|
|
>>> x = expr.convert(x, expr.NC4HW4)
|
|
|
|
|
>>> w = expr.reshape(expr.range(0., 16., 1.), [2, 2, 2, 2])
|
|
|
|
|
>>> b = expr.const([1.0, 1.0], [2])
|
|
|
|
|
>>> expr.convert(expr.conv2d(x, w, b), expr.NCHW)
|
2022-08-31 20:11:16 +08:00
|
|
|
|
array([[[[ 269., 297.],
|
|
|
|
|
[ 353., 381.]],
|
|
|
|
|
[[ 685., 777.],
|
|
|
|
|
[ 961., 1053.]]]], dtype=float32)
|
2022-08-23 21:21:29 +08:00
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
---
|
|
|
|
|
### `conv2d_transpose(input, weight, bias, stride=(1,1), padding=(0,0), dilate=(1,1), group=1, padding_mode=_F.VALID)`
|
|
|
|
|
转置卷积,是卷积的反向操作
|
|
|
|
|
|
|
|
|
|
参数:
|
|
|
|
|
- `input: var_like` 输入变量,需要做反卷积的输入图像
|
|
|
|
|
- `weight: var_like` 输入变量,反卷积产生的通道数
|
|
|
|
|
- `bias: var_like` 输入变量,在输出中添加一个可学习的偏差
|
|
|
|
|
- `stride: tuple of int` 输入变量,反卷积步长,默认为(1,1)
|
|
|
|
|
- `padding: tuple of int` 输入变量,填充操作,控制padding_mode的数目
|
|
|
|
|
- `dilate: tuple of int` 输入变量,扩张操作:控制kernel点(反卷积核点)的间距,默认值为(1,1)
|
|
|
|
|
- `group: int` 输入变量,控制分组反卷积,默认不分组,为1组
|
|
|
|
|
- `padding_mode: Padding_Mode` 输入变量,填充模式,默认是VALID
|
|
|
|
|
|
|
|
|
|
返回:转置卷积(反卷积)
|
|
|
|
|
|
|
|
|
|
返回类型:`Var`
|
|
|
|
|
|
|
|
|
|
示例:
|
|
|
|
|
|
|
|
|
|
```python
|
|
|
|
|
>>> x = expr.reshape(expr.range(0., 18., 1.), [1, 2, 3, 3])
|
|
|
|
|
>>> x = expr.convert(x, expr.NC4HW4)
|
|
|
|
|
>>> w = expr.reshape(expr.range(0., 16., 1.), [2, 2, 2, 2])
|
|
|
|
|
>>> b = expr.const([1.0, 1.0], [2])
|
|
|
|
|
>>> expr.convert(expr.conv2d_transpose(x, w, b), expr.NCHW)
|
2022-08-31 20:11:16 +08:00
|
|
|
|
array([[[[ 73., 162., 180., 102.],
|
|
|
|
|
[187., 417., 461., 259.],
|
|
|
|
|
[247., 549., 593., 331.],
|
|
|
|
|
[163., 358., 384., 212.]],
|
|
|
|
|
[[109., 242., 276., 154.],
|
|
|
|
|
[283., 625., 701., 387.],
|
|
|
|
|
[391., 853., 929., 507.],
|
|
|
|
|
[247., 534., 576., 312.]]]], dtype=float32)
|
2022-08-23 21:21:29 +08:00
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
---
|
|
|
|
|
### `max_pool(x, kernel, stride, padding_mode=_F.VALID, pads=(0,0))`
|
|
|
|
|
最大值池化操作
|
|
|
|
|
|
|
|
|
|
参数:
|
|
|
|
|
- `x: var_like` 输入变量,池化的输入
|
|
|
|
|
- `kernel: var_like` 输入变量
|
|
|
|
|
- `stride: tuple of int` 输入变量,窗口在每一个维度上滑动的步长
|
|
|
|
|
- `padding_mode: Padding_Mode` 输入变量,填充模式,默认是VALID
|
|
|
|
|
- `pads: tuple of int` 输入变量
|
|
|
|
|
|
|
|
|
|
返回:最大池化
|
|
|
|
|
|
|
|
|
|
返回类型:`Var`
|
|
|
|
|
|
|
|
|
|
示例:
|
|
|
|
|
|
|
|
|
|
```python
|
|
|
|
|
>>> x = expr.reshape(expr.range(0., 18., 1.), [1, 2, 3, 3])
|
|
|
|
|
>>> expr.max_pool(x, [2,2], [1,1])
|
2022-08-31 20:11:16 +08:00
|
|
|
|
array([[[[ 4., 5.],
|
|
|
|
|
[ 7., 8.]],
|
|
|
|
|
[[13., 14.],
|
|
|
|
|
[16., 17.]]]], dtype=float32)
|
2022-08-23 21:21:29 +08:00
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
---
|
|
|
|
|
### `avg_pool(x, kernel, stride, padding_mode=_F.VALID, pads=(0,0))`
|
|
|
|
|
平均池化操作
|
|
|
|
|
|
|
|
|
|
参数:
|
|
|
|
|
- `x: var_like` 输入变量,池化的输入
|
|
|
|
|
- `kernel: var_like` 输入变量
|
|
|
|
|
- `stride: tuple of int` 输入变量,窗口在每一个维度上滑动的步长
|
|
|
|
|
- `padding_mode: Padding_Mode` 输入变量,填充模式,默认是VALID
|
|
|
|
|
- `pads: tuple of int` 输入变量
|
|
|
|
|
|
|
|
|
|
返回:平均池化
|
|
|
|
|
|
|
|
|
|
返回类型:`Var`
|
|
|
|
|
|
|
|
|
|
示例:
|
|
|
|
|
|
|
|
|
|
```python
|
|
|
|
|
>>> x = expr.reshape(expr.range(0., 18., 1.), [1, 2, 3, 3])
|
|
|
|
|
>>> expr.avg_pool(x, [2,2], [1,1])
|
2022-08-31 20:11:16 +08:00
|
|
|
|
array([[[[ 2., 3.],
|
|
|
|
|
[ 5., 6.]],
|
|
|
|
|
[[11., 12.],
|
|
|
|
|
[14., 15.]]]], dtype=float32)
|
2022-08-23 21:21:29 +08:00
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
---
|
|
|
|
|
### `reshape(x, shape, original_format=_F.NCHW)`
|
|
|
|
|
改变输入数的形状
|
|
|
|
|
|
|
|
|
|
参数:
|
|
|
|
|
- `x: var_like` 输入变量,数组或者矩阵
|
|
|
|
|
- `shape: axis_like` 输入变量,返回数据的形状
|
|
|
|
|
- `original_format : data_format` 输入变量,默认是NCHW
|
|
|
|
|
|
|
|
|
|
返回:输入数对应的`shape`
|
|
|
|
|
|
|
|
|
|
返回类型:`Var`
|
|
|
|
|
|
|
|
|
|
示例:
|
|
|
|
|
|
|
|
|
|
```python
|
|
|
|
|
>>> x = expr.reshape(expr.range(0., 18., 1.), [1, 2, 3, 3])
|
|
|
|
|
>>> reshape(x, [3, 6])
|
2022-08-31 20:11:16 +08:00
|
|
|
|
array([[ 0., 1., 2., 3., 4., 5.],
|
|
|
|
|
[ 6., 7., 8., 9., 10., 11.],
|
|
|
|
|
[12., 13., 14., 15., 16., 17.]], dtype=float32)
|
2022-08-23 21:21:29 +08:00
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
---
|
|
|
|
|
### `scale(x, channels, scale, bias)`
|
|
|
|
|
返回`x * scale + bias`的值
|
|
|
|
|
|
|
|
|
|
参数:
|
|
|
|
|
- `x: var_like` 输入变量
|
|
|
|
|
- `channels : int` 输入变量
|
|
|
|
|
- `scale : [float]` 输入变量
|
|
|
|
|
- `bias : [float]` 输入变量
|
|
|
|
|
|
|
|
|
|
返回:`x * scale + bias`的值
|
|
|
|
|
|
|
|
|
|
返回类型:`Var`
|
|
|
|
|
|
|
|
|
|
示例:
|
|
|
|
|
|
|
|
|
|
```python
|
|
|
|
|
>>> x = expr.reshape(expr.range(0., 18., 1.), [1, 2, 3, 3])
|
|
|
|
|
>>> x = expr.convert(x, expr.NC4HW4)
|
|
|
|
|
>>> y = expr.scale(x, 2, [2.0, 1.0], [3.0, 4.0])
|
|
|
|
|
>>> expr.convert(y, expr.NCHW)
|
2022-08-31 20:11:16 +08:00
|
|
|
|
array([[[[ 3., 5., 7.],
|
2022-08-23 21:21:29 +08:00
|
|
|
|
[ 9., 11., 13.],
|
|
|
|
|
[15., 17., 19.]],
|
|
|
|
|
[[13., 14., 15.],
|
|
|
|
|
[16., 17., 18.],
|
|
|
|
|
[19., 20., 21.]]]], dtype=float32)
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
---
|
|
|
|
|
### `relu(x, slope=0.0)`
|
|
|
|
|
修正线性单元,修正公式为`slope*x if x < 0 else x`
|
|
|
|
|
|
|
|
|
|
参数:
|
|
|
|
|
- `x: var_like` 输入变量
|
|
|
|
|
- `slope : float` 输入变量,修正梯度,默认是0.0
|
|
|
|
|
|
|
|
|
|
返回:修正后的值
|
|
|
|
|
|
|
|
|
|
返回类型:`Var`
|
|
|
|
|
|
|
|
|
|
示例:
|
|
|
|
|
|
|
|
|
|
```python
|
|
|
|
|
>>> expr.relu([-1.0, 0.0, 2.0])
|
|
|
|
|
var[0., 0., 2.], dtype=float32)
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
---
|
|
|
|
|
### `relu6(x, min=0.0, max=6.0)`
|
|
|
|
|
修正线性单元,修正公式为`max(min(x, max), min)`
|
|
|
|
|
|
|
|
|
|
参数:
|
|
|
|
|
- `x: var_like` 输入变量
|
|
|
|
|
- `min : float` 输入变量,修正最小范围,默认是0.0
|
|
|
|
|
- `max : float` 输入变量,修正最大范围,默认是6.0
|
|
|
|
|
|
|
|
|
|
返回:修正后的值
|
|
|
|
|
|
|
|
|
|
返回类型:`Var`
|
|
|
|
|
|
|
|
|
|
示例:
|
|
|
|
|
|
|
|
|
|
```python
|
|
|
|
|
>>> expr.relu6([-1.0, 7.0, 2.0])
|
|
|
|
|
var[0., 6., 2.], dtype=float32)
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
---
|
|
|
|
|
### `prelu(x, slopes)`
|
|
|
|
|
查找指定张量输入的泄漏校正线性,修正公式为`slope*x if x < 0 else x`
|
|
|
|
|
|
|
|
|
|
参数:
|
|
|
|
|
- `x: var_like` 输入变量,data_format 是 NC4HW4.
|
|
|
|
|
- `slopes : [float]` 输入变量,修正梯度
|
|
|
|
|
|
|
|
|
|
返回:修正后的值
|
|
|
|
|
|
|
|
|
|
返回类型:`Var`
|
|
|
|
|
|
|
|
|
|
示例:
|
|
|
|
|
|
|
|
|
|
```python
|
|
|
|
|
>>> x = expr.reshape(expr.range(-4., 4., 1.), [1, 2, 2, 2])
|
|
|
|
|
>>> x = expr.convert(x, expr.NC4HW4)
|
|
|
|
|
>>> expr.convert(expr.prelu(x, [0.5, 0.6]), expr.NCHW)
|
2022-08-31 20:11:16 +08:00
|
|
|
|
array([[[[-2. , -1.5],
|
|
|
|
|
[-1. , -0.5]],
|
|
|
|
|
[[ 0. , 1. ],
|
|
|
|
|
[ 2. , 3. ]]]], dtype=float32)
|
2022-08-23 21:21:29 +08:00
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
---
|
|
|
|
|
### `softmax(x, axis=-1)`
|
|
|
|
|
数学公式:`exp(x)/sum(exp(x), axis)`
|
|
|
|
|
|
|
|
|
|
参数:
|
|
|
|
|
- `x: var_like` 输入变量
|
|
|
|
|
- `axis : int` 输入变量,默认为-1
|
|
|
|
|
|
|
|
|
|
返回:修正后的值
|
|
|
|
|
|
|
|
|
|
返回类型:`Var`
|
|
|
|
|
|
|
|
|
|
示例:
|
|
|
|
|
|
|
|
|
|
```python
|
|
|
|
|
>>> expr.softmax([[1., 2.], [3., 4.]], 0)
|
2022-08-31 20:11:16 +08:00
|
|
|
|
array([[0.1191897 , 0.1191897 ],
|
|
|
|
|
[0.88081026, 0.88081026]], dtype=float32)
|
2022-08-23 21:21:29 +08:00
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
---
|
|
|
|
|
### `softplus(x)`
|
|
|
|
|
通过输入数据 x(张量)并生成一个输出数据(张量)转换公式:`log(exp(x) + 1)`
|
|
|
|
|
|
|
|
|
|
参数:
|
|
|
|
|
- `x: var_like` 输入变量
|
|
|
|
|
|
|
|
|
|
返回:输出数据(张量)
|
|
|
|
|
|
|
|
|
|
返回类型:`Var`
|
|
|
|
|
|
|
|
|
|
示例:
|
|
|
|
|
|
|
|
|
|
```python
|
|
|
|
|
>>> expr.softplus([[1., 2.], [3., 4.]])
|
2022-08-31 20:11:16 +08:00
|
|
|
|
array([[1.313261 , 2.1268892],
|
|
|
|
|
[3.048587 , 4.01813 ]], dtype=float32)
|
2022-08-23 21:21:29 +08:00
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
---
|
|
|
|
|
### `softsign(x)`
|
|
|
|
|
返回通过转换公式:`x / (abs(x) + 1)`转换后的数据
|
|
|
|
|
|
|
|
|
|
参数:
|
|
|
|
|
- `x: var_like` 输入变量
|
|
|
|
|
|
|
|
|
|
返回:转换公式`x / (abs(x) + 1)`转换后的数据
|
|
|
|
|
|
|
|
|
|
返回类型:`Var`
|
|
|
|
|
|
|
|
|
|
示例:
|
|
|
|
|
|
|
|
|
|
```python
|
|
|
|
|
>>> expr.softsign([[1., 2.], [3., 4.]])
|
2022-08-31 20:11:16 +08:00
|
|
|
|
array([[0.5 , 0.6666667],
|
|
|
|
|
[0.75 , 0.8 ]], dtype=float32)
|
2022-08-23 21:21:29 +08:00
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
---
|
|
|
|
|
### `slice(x, starts, sizes)`
|
|
|
|
|
返回从张量中提取想要的切片,此操作从由starts指定位置开始的张量x中提取一个尺寸sizes的切片,切片sizes被表示为张量形状,提供公式`x[starts[0]:starts[0]+sizes[0], ..., starts[-1]:starts[-1]+sizes[-1]]`
|
|
|
|
|
|
|
|
|
|
参数:
|
|
|
|
|
- `x: var_like` 输入变量
|
|
|
|
|
- `starts : var_like` 输入变量,切片提取起始位置
|
|
|
|
|
- `sizes : var_like` 输入变量,切片提取的尺寸
|
|
|
|
|
|
|
|
|
|
返回:切片数据
|
|
|
|
|
|
|
|
|
|
返回类型:`Var`
|
|
|
|
|
|
|
|
|
|
示例:
|
|
|
|
|
|
|
|
|
|
```python
|
|
|
|
|
>>> expr.slice([[1., 2., 3.], [4., 5., 6.]], [0, 1], [1, 2])
|
2022-08-31 20:11:16 +08:00
|
|
|
|
array([[2., 3.]], dtype=float32)
|
2022-08-23 21:21:29 +08:00
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
---
|
|
|
|
|
### `split(x, size_splits, axis)`
|
|
|
|
|
返回切割张量的子张量数据
|
|
|
|
|
|
|
|
|
|
参数:
|
|
|
|
|
- `x: var_like` 输入变量
|
|
|
|
|
- `size_splits : var_like` 输入变量,int类型,切成的份数
|
|
|
|
|
- `axis : int` 输入变量,进行切割的维度
|
|
|
|
|
|
|
|
|
|
返回:切割张量的子张量数据
|
|
|
|
|
|
|
|
|
|
返回类型:`Var`
|
|
|
|
|
|
|
|
|
|
示例:
|
|
|
|
|
|
|
|
|
|
```python
|
|
|
|
|
>>> expr.split([[1., 2., 3.], [4., 5., 6.]], [1, 1], 0)
|
2022-08-31 20:11:16 +08:00
|
|
|
|
[array([[1., 2., 3.]], dtype=float32), array([[4., 5., 6.]], dtype=float32)]
|
2022-08-23 21:21:29 +08:00
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
---
|
|
|
|
|
### `strided_slice(x, begin, end, strides, begin_mask=0, end_mask=0, ellipsis_mask=0, new_axis_mask=0, shrink_axis_mask=0)`
|
|
|
|
|
从给定的 x 张量中提取一个尺寸 (end-begin)/stride 的片段,从 begin 片段指定的位置开始,以步长 stride 添加索引,直到所有维度都不小于 end,这里的 stride 可以是负值,表示反向切片,公式:`x[begin[0]:strides[0]:end[0], ..., begin[-1]:strides[-1]:end[-1]]`。
|
|
|
|
|
|
|
|
|
|
参数:
|
|
|
|
|
- `x: var_like` 输入变量
|
|
|
|
|
- `begin : var_like` 输入变量,int类型,开始切片处
|
|
|
|
|
- `end : var_like` 输入变量,int类型,终止切片处
|
|
|
|
|
- `strides : var_like` 输入变量,int类型,步长
|
|
|
|
|
- `begin_mask : int` 输入变量,默认为0
|
|
|
|
|
- `end_mask : int` 输入变量,默认为0
|
|
|
|
|
- `ellipsis_mask : int` 输入变量,默认为0
|
|
|
|
|
- `new_axis_mask : int` 输入变量,默认为0
|
|
|
|
|
- `shrink_axis_mask : int` 输入变量,默认为0
|
|
|
|
|
|
|
|
|
|
返回:提取的片段
|
|
|
|
|
|
|
|
|
|
返回类型:`Var`
|
|
|
|
|
|
|
|
|
|
示例:
|
|
|
|
|
|
|
|
|
|
```python
|
|
|
|
|
>>> expr.strided_slice([[1., 2., 3.], [4., 5., 6.]], [0, 0], [1, 2], [1, 2])
|
2022-08-31 20:11:16 +08:00
|
|
|
|
array([[1.]], dtype=float32)
|
2022-08-23 21:21:29 +08:00
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
---
|
|
|
|
|
### `concat(values, axis)`
|
|
|
|
|
根据axis设置的维度拼接输入变量values中的数据
|
|
|
|
|
|
|
|
|
|
参数:
|
|
|
|
|
- `values : [var_like]` 输入变量
|
|
|
|
|
- `axis : int` 输入变量,操作的维度
|
|
|
|
|
|
|
|
|
|
返回:拼接后的数据
|
|
|
|
|
|
|
|
|
|
返回类型:`Var`
|
|
|
|
|
|
|
|
|
|
示例:
|
|
|
|
|
|
|
|
|
|
```python
|
|
|
|
|
>>> expr.concat([[1., 2., 3.], [4., 5., 6.]], 0)
|
2022-08-31 20:11:16 +08:00
|
|
|
|
array([1., 2., 3., 4., 5., 6.], dtype=float32)
|
2022-08-23 21:21:29 +08:00
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
---
|
|
|
|
|
### `where(x)`
|
|
|
|
|
返回满足条件`x > 0`的索引
|
|
|
|
|
|
|
|
|
|
参数:
|
|
|
|
|
- `x : [var_like]` 输入变量
|
|
|
|
|
|
|
|
|
|
返回:索引,int类型
|
|
|
|
|
|
|
|
|
|
返回类型:`Var`
|
|
|
|
|
|
|
|
|
|
示例:
|
|
|
|
|
|
|
|
|
|
```python
|
|
|
|
|
>>> expr.where([0., 1., -2., 3.3])
|
2022-08-31 20:11:16 +08:00
|
|
|
|
array([[1],[3]], dtype=int32)
|
2022-08-23 21:21:29 +08:00
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
---
|
|
|
|
|
### `convert(x, format)`
|
|
|
|
|
将输入变量 x 的 data_format 转换为 format
|
|
|
|
|
|
|
|
|
|
参数:
|
|
|
|
|
- `x : [var_like]` 输入变量
|
|
|
|
|
- `format : data_format` 输入变量,[NCHW, NHWC, NC4HW4]
|
|
|
|
|
|
|
|
|
|
返回:转换后的format
|
|
|
|
|
|
|
|
|
|
返回类型:`Var`
|
|
|
|
|
|
|
|
|
|
示例:
|
|
|
|
|
|
|
|
|
|
```python
|
|
|
|
|
>>> x = expr.reshape(expr.range(0., 8., 1.), [1, 2, 2, 2]) # data_format is NCHW
|
|
|
|
|
>>> expr.convert(x, expr.NHWC)
|
2022-08-31 20:11:16 +08:00
|
|
|
|
array([[[[0., 4.], [1., 5.]],
|
|
|
|
|
[[2., 6.], [3., 7.]]]], dtype=float32)
|
2022-08-23 21:21:29 +08:00
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
---
|
|
|
|
|
### `transpose(x, perm)`
|
|
|
|
|
返回一个转置的数据,转置的维度为perm
|
|
|
|
|
|
|
|
|
|
参数:
|
|
|
|
|
- `x : [var_like]` 输入变量
|
|
|
|
|
- `perm : [int] or var_like` 新的维度序列
|
|
|
|
|
|
|
|
|
|
返回:通过perm转置的数据
|
|
|
|
|
|
|
|
|
|
返回类型:`Var`
|
|
|
|
|
|
|
|
|
|
示例:
|
|
|
|
|
|
|
|
|
|
```python
|
|
|
|
|
>>> expr.transpose([[1.,2.,3.],[4.,5.,6.]], [1,0])
|
2022-08-31 20:11:16 +08:00
|
|
|
|
array([[1., 4.],
|
|
|
|
|
[2., 5.],
|
|
|
|
|
[3., 6.]], dtype=float32)
|
2022-08-23 21:21:29 +08:00
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
---
|
|
|
|
|
### `channel_shuffle(x, axis)`
|
|
|
|
|
做以下操作:
|
|
|
|
|
x = _Convert(x, NHWC);
|
|
|
|
|
x = _Reshape(x, {0, 0, 0, group, -1}, NHWC);
|
|
|
|
|
x = _Transpose(x, {0, 1, 2, 4, 3});
|
|
|
|
|
x = _Reshape(x, {0, 0, 0, -1}, NHWC);
|
|
|
|
|
channel_shuffle_res = _Convert(x, NC4HW4);
|
|
|
|
|
|
|
|
|
|
参数:
|
|
|
|
|
- `x : [var_like]` 输入变量
|
|
|
|
|
- `axis : int` 输入变量
|
|
|
|
|
|
|
|
|
|
返回:
|
|
|
|
|
|
|
|
|
|
返回类型:`Var`
|
|
|
|
|
|
|
|
|
|
示例:
|
|
|
|
|
|
|
|
|
|
```python
|
|
|
|
|
>>> x = expr.reshape(expr.range(0., 8., 1.), [1, 4, 1, 2])
|
|
|
|
|
>>> expr.convert(expr.channel_shuffle(x, 2), expr.NCHW)
|
2022-08-31 20:11:16 +08:00
|
|
|
|
array([[[[0., 1.]],
|
|
|
|
|
[[4., 5.]],
|
|
|
|
|
[[2., 3.]],
|
|
|
|
|
[[6., 7.]]]], dtype=float32)
|
2022-08-23 21:21:29 +08:00
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
---
|
|
|
|
|
### `reverse_sequence(x, y, batch_dim, seq_dim)`
|
|
|
|
|
沿着batch_dim维度对x进行切片并反转维度seq_dim上的y[i]元素
|
|
|
|
|
|
|
|
|
|
参数:
|
|
|
|
|
- `x : var_like` 输入变量
|
|
|
|
|
- `y : var_like` 输入变量
|
|
|
|
|
- `batch_dim : int` 输入变量,切片的维度
|
|
|
|
|
- `seq_dim : int` 输入变量,反转的维度
|
|
|
|
|
|
|
|
|
|
返回:反转序列的值
|
|
|
|
|
|
|
|
|
|
返回类型:`Var`
|
|
|
|
|
|
|
|
|
|
示例:
|
|
|
|
|
|
|
|
|
|
```python
|
|
|
|
|
>>> x = expr.reshape(expr.range(0., 8., 1.), [2, 4])
|
|
|
|
|
>>> expr.reverse_sequence(x, [1, 1], 0, 1)
|
2022-08-31 20:11:16 +08:00
|
|
|
|
array([[0., 1., 2., 3.],
|
|
|
|
|
[4., 5., 6., 7.]], dtype=float32)
|
2022-08-23 21:21:29 +08:00
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
---
|
|
|
|
|
### `crop(x, size, axis, offset)`
|
|
|
|
|
裁剪输入数据x到size对应的尺寸,通过axis维度,起始点offset
|
|
|
|
|
|
|
|
|
|
参数:
|
|
|
|
|
- `x : var_like` 输入变量,data_format 为 NC4HW4.
|
|
|
|
|
- `size : var_like` 返回裁剪的尺寸
|
|
|
|
|
- `axis : int` 输入变量,裁剪的维度
|
|
|
|
|
- `offset : [int]` 输入变量,裁剪的起始点
|
|
|
|
|
|
|
|
|
|
返回:裁剪后的数据
|
|
|
|
|
|
|
|
|
|
返回类型:`Var`
|
|
|
|
|
|
|
|
|
|
示例:
|
|
|
|
|
|
|
|
|
|
```python
|
|
|
|
|
>>> x = expr.reshape(expr.range(0., 16., 1.), [1, 1, 4, 4])
|
|
|
|
|
>>> x = expr.convert(x, expr.NC4HW4)
|
|
|
|
|
>>> size = expr.const([0.0, 0.0, 0.0, 0.0], [1, 1, 2, 2])
|
|
|
|
|
>>> expr.convert(expr.crop(x, size, 2, [1, 1]), expr.NCHW)
|
2022-08-31 20:11:16 +08:00
|
|
|
|
array([[[[ 5., 6.],
|
|
|
|
|
[ 9., 10.]]]], dtype=float32)
|
2022-08-23 21:21:29 +08:00
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
---
|
|
|
|
|
### `resize(x, x_scale, y_scale)`
|
|
|
|
|
调整输入值x的(高度、宽度)的大小,公式为:(y_scale * height, x_scale * width).
|
|
|
|
|
|
|
|
|
|
参数:
|
|
|
|
|
- `x : var_like` 输入变量
|
|
|
|
|
- `x_scale : float` 输入变量,图像高度缩放比例
|
|
|
|
|
- `y_scale : float` 输入变量,图像宽度缩放比例
|
|
|
|
|
|
|
|
|
|
返回:(y_scale * height, x_scale * width)的值
|
|
|
|
|
|
|
|
|
|
返回类型:`Var`
|
|
|
|
|
|
|
|
|
|
示例:
|
|
|
|
|
|
|
|
|
|
```python
|
|
|
|
|
>>> x = expr.reshape(expr.range(0., 4., 1.), [1, 1, 2, 2])
|
|
|
|
|
>>> x = expr.convert(x, expr.NC4HW4)
|
|
|
|
|
>>> expr.convert(expr.resize(x, size, 2, 2), expr.NCHW)
|
2022-08-31 20:11:16 +08:00
|
|
|
|
array([[[[0. , 0.5, 1. , 1. ],
|
|
|
|
|
[1. , 1.5, 2. , 2. ],
|
|
|
|
|
[2. , 2.5, 3. , 3. ],
|
|
|
|
|
[2. , 2.5, 3. , 3. ]]]], dtype=float32)
|
2022-08-23 21:21:29 +08:00
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
---
|
|
|
|
|
### `crop_and_resize(x, boxes, box_ind, crop_size, method=_F.BILINEAR, extrapolation_value=0.)`
|
|
|
|
|
从输入图像数据中提取固定大小的切片,并指定插值算法 (method) resize成指定的输出大小(crop_size)
|
|
|
|
|
|
|
|
|
|
参数:
|
|
|
|
|
- `x : var_like` 输入变量,data_format 为 NHWC.
|
|
|
|
|
- `boxes : var_like` 输入变量,int类型,需要划分的区域
|
|
|
|
|
- `box_ind : var_like` 输入变量,是boxes和x之间的索引
|
|
|
|
|
- `crop_size : var_like` 输入变量,表示RoiAlign之后的大小
|
|
|
|
|
- `method : Interp_Method` 输入变量,[NEAREST, BILINEAR],默认是BILINEAR,差值算法
|
|
|
|
|
- `extrapolation_value : float` 输入变量,默认为0,外插值,boxes>1时裁剪超出图像范围,自动补齐的填充值
|
|
|
|
|
|
|
|
|
|
返回:crop_size数据
|
|
|
|
|
|
|
|
|
|
返回类型:`Var`
|
|
|
|
|
|
|
|
|
|
示例:
|
|
|
|
|
|
|
|
|
|
```python
|
|
|
|
|
>>> x = expr.reshape(expr.range(0., 16., 1.), [1, 1, 4, 4])
|
|
|
|
|
>>> x = expr.convert(x, expr.NHWC)
|
|
|
|
|
>>> boxes = expr.const([0.2, 0.3, 0.4, 0.5], [1, 4])
|
|
|
|
|
>>> expr.convert(expr.crop_and_resize(x, boxes, [0], [2, 2]), expr.NHWC)
|
2022-08-31 20:11:16 +08:00
|
|
|
|
array([[[[3.3000002],
|
2022-08-23 21:21:29 +08:00
|
|
|
|
[3.9 ]],
|
|
|
|
|
[[5.7000003],
|
|
|
|
|
[6.3 ]]]], dtype=float32)
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
---
|
|
|
|
|
### `pad(x, paddings, mode=_F.CONSTANT)`
|
|
|
|
|
对输入数x某个维度进行填充或复制
|
|
|
|
|
|
|
|
|
|
参数:
|
|
|
|
|
- `x : var_like` 输入变量
|
|
|
|
|
- `paddings : var_like` 输入变量,形状是[x.ndim, 2],int类型,填充的维度
|
|
|
|
|
- `mode : PadValue_Mode` 输入变量,[CONSTANT(填充常数), REFLECT(镜像复制), SYMMETRIC(对称复制)], 默认为CONSTANT
|
|
|
|
|
|
|
|
|
|
返回:填充或复制后的数据
|
|
|
|
|
|
|
|
|
|
返回类型:`Var`
|
|
|
|
|
|
|
|
|
|
示例:
|
|
|
|
|
|
|
|
|
|
```python
|
|
|
|
|
>>> expr.pad([[1.,2.],[3.,4.]], [[0, 1], [1,2]])
|
2022-08-31 20:11:16 +08:00
|
|
|
|
array([[0., 1., 2., 0., 0.],
|
|
|
|
|
[0., 3., 4., 0., 0.],
|
|
|
|
|
[0., 0., 0., 0., 0.]], dtype=float32)
|
2022-08-23 21:21:29 +08:00
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
---
|
|
|
|
|
### `randomuniform(shape, dtype=_F.float, low=0.0, high=1.0, seed0=0, seed1=1)`
|
|
|
|
|
用于从均匀分布中输出随机值
|
|
|
|
|
|
|
|
|
|
参数:
|
|
|
|
|
- `shape : axis_like` 输入变量,数据形状
|
|
|
|
|
- `dtype : dtype` 输出的类型:[float, double, int, int64, uint8],默认为float
|
|
|
|
|
- `low : float` 输入变量,随机值范围下限,默认为0
|
|
|
|
|
- `high : float` 输入变量,随机值范围上限,默认为1
|
|
|
|
|
- `seed0 : int` 输入变量,随机因子,默认为0
|
|
|
|
|
- `seed1 : int` 输入变量,随机因子,默认为0
|
|
|
|
|
|
|
|
|
|
返回:随机值
|
|
|
|
|
|
|
|
|
|
返回类型:`Var`
|
|
|
|
|
|
|
|
|
|
示例:
|
|
|
|
|
|
|
|
|
|
```python
|
|
|
|
|
>>> expr.pad([[1.,2.],[3.,4.]], [[0, 1], [1,2]])
|
2022-08-31 20:11:16 +08:00
|
|
|
|
array([[0., 1., 2., 0., 0.],
|
|
|
|
|
[0., 3., 4., 0., 0.],
|
|
|
|
|
[0., 0., 0., 0., 0.]], dtype=float32)
|
2022-08-23 21:21:29 +08:00
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
---
|
|
|
|
|
### `expand_dims(x, axis)`
|
|
|
|
|
给输入数据在axis轴上新增一个维度
|
|
|
|
|
|
|
|
|
|
参数:
|
|
|
|
|
- `x : var_like` 输入变量
|
|
|
|
|
- `axis : int or var_like` 输入变量,int类型,指定扩大输入数据形状的维度索引值
|
|
|
|
|
|
|
|
|
|
返回:新增维度后的数据
|
|
|
|
|
|
|
|
|
|
返回类型:`Var`
|
|
|
|
|
|
|
|
|
|
示例:
|
|
|
|
|
|
|
|
|
|
```python
|
|
|
|
|
>>> expr.expand_dims([1.,2.], 0)
|
2022-08-31 20:11:16 +08:00
|
|
|
|
array([[1., 2.]], dtype=float32)
|
2022-08-23 21:21:29 +08:00
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
---
|
|
|
|
|
### `rank(x)`
|
|
|
|
|
返回输入数据的维度
|
|
|
|
|
|
|
|
|
|
参数:
|
|
|
|
|
- `x : var_like` 输入变量
|
|
|
|
|
|
|
|
|
|
返回:维度信息
|
|
|
|
|
|
|
|
|
|
返回类型:`Var`
|
|
|
|
|
|
|
|
|
|
示例:
|
|
|
|
|
|
|
|
|
|
```python
|
|
|
|
|
>>> expr.rank([[1.,2.],[3.,4.]])
|
2022-08-31 20:11:16 +08:00
|
|
|
|
array(2, dtype=int32)
|
2022-08-23 21:21:29 +08:00
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
---
|
|
|
|
|
### `size(x)`
|
|
|
|
|
返回输入数据的大小
|
|
|
|
|
|
|
|
|
|
参数:
|
|
|
|
|
- `x : var_like` 输入变量
|
|
|
|
|
|
|
|
|
|
返回:大小size
|
|
|
|
|
|
|
|
|
|
返回类型:`Var`
|
|
|
|
|
|
|
|
|
|
示例:
|
|
|
|
|
|
|
|
|
|
```python
|
|
|
|
|
>>> expr.size([[1.,2.],[3.,4.]])
|
2022-08-31 20:11:16 +08:00
|
|
|
|
array(4, dtype=int32)
|
2022-08-23 21:21:29 +08:00
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
---
|
|
|
|
|
### `shape(x)`
|
|
|
|
|
返回输入数据的形状
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
参数:
|
|
|
|
|
- `x : var_like` 输入变量
|
|
|
|
|
|
|
|
|
|
返回:形状
|
|
|
|
|
|
|
|
|
|
返回类型:`Var`
|
|
|
|
|
|
|
|
|
|
示例:
|
|
|
|
|
|
|
|
|
|
```python
|
|
|
|
|
>>> expr.shape([[1.,2.],[3.,4.]])
|
2022-08-31 20:11:16 +08:00
|
|
|
|
array([2, 2], dtype=int32)
|
2022-08-23 21:21:29 +08:00
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
---
|
|
|
|
|
### `stack(values, axis=0)`
|
|
|
|
|
将输入数据x和要沿着axis维度进行拼接
|
|
|
|
|
|
|
|
|
|
参数:
|
|
|
|
|
- `x : var_like` 输入变量
|
|
|
|
|
- `axis : int` 输入变量,默认为0,指明对矩阵的哪个维度进行拼接
|
|
|
|
|
|
|
|
|
|
返回:拼接的数据
|
|
|
|
|
|
|
|
|
|
返回类型:`Var`
|
|
|
|
|
|
|
|
|
|
示例:
|
|
|
|
|
|
|
|
|
|
```python
|
|
|
|
|
>>> x = expr.const([1., 2.], [2])
|
|
|
|
|
>>> y = expr.const([3., 4.], [2])
|
|
|
|
|
>>> expr.stack([x, y])
|
2022-08-31 20:11:16 +08:00
|
|
|
|
array([[1., 2.],
|
|
|
|
|
[3., 4.]], dtype=float32)
|
2022-08-23 21:21:29 +08:00
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
---
|
|
|
|
|
### `unstack(x, axis=0)`
|
|
|
|
|
将输入数据x沿着axis维度堆叠为r-1级数据
|
|
|
|
|
|
|
|
|
|
参数:
|
|
|
|
|
- `x : var_like` 输入变量
|
|
|
|
|
- `axis : int` 输入变量,默认为0,指明对矩阵的哪个维度进行分解
|
|
|
|
|
|
|
|
|
|
返回:分解的数据
|
|
|
|
|
|
|
|
|
|
返回类型:`Var`
|
|
|
|
|
|
|
|
|
|
示例:
|
|
|
|
|
|
|
|
|
|
```python
|
|
|
|
|
>>> expr.unstack([[1., 2.], [3., 4.]])
|
2022-08-31 20:11:16 +08:00
|
|
|
|
[array([1., 2.], dtype=float32), array([3., 4.], dtype=float32)]
|
2022-08-23 21:21:29 +08:00
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
---
|
|
|
|
|
### `fill(shape, value)`
|
|
|
|
|
创建一个填充有标量值的数据
|
|
|
|
|
|
|
|
|
|
参数:
|
|
|
|
|
- `shape : var_like` 输入变量,int类型,定义输出张量形状的整数数组
|
|
|
|
|
- `value : var_like` 输入变量,一个标量值,用于填充输出数据。
|
|
|
|
|
|
|
|
|
|
返回:填充有标量值的指定形状的数据
|
|
|
|
|
|
|
|
|
|
返回类型:`Var`
|
|
|
|
|
|
|
|
|
|
示例:
|
|
|
|
|
|
|
|
|
|
```python
|
|
|
|
|
>>> expr.fill([2,3], 1.0)
|
2022-08-31 20:11:16 +08:00
|
|
|
|
array([[1., 1., 1.],
|
|
|
|
|
[1., 1., 1.]], dtype=float32)
|
2022-08-23 21:21:29 +08:00
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
---
|
|
|
|
|
### `tile(x, multiples)`
|
|
|
|
|
返回输入数x在同一维度上重复multiples次的数据
|
|
|
|
|
|
|
|
|
|
参数:
|
|
|
|
|
- `x : var_like` 输入变量
|
|
|
|
|
- `multiples : var_like` 输入变量,int类型,同一维度上重复的次数
|
|
|
|
|
|
|
|
|
|
返回:x重复multiples次的数据
|
|
|
|
|
|
|
|
|
|
返回类型:`Var`
|
|
|
|
|
|
|
|
|
|
示例:
|
|
|
|
|
|
|
|
|
|
```python
|
|
|
|
|
>>> expr.tile([2,3], [3])
|
2022-08-31 20:11:16 +08:00
|
|
|
|
array([2, 3, 2, 3, 2, 3], dtype=int32)
|
2022-08-23 21:21:29 +08:00
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
---
|
|
|
|
|
### `gather(x, index)`
|
|
|
|
|
根据下标返回对应的值
|
|
|
|
|
|
|
|
|
|
参数:
|
|
|
|
|
- `x : var_like` 输入变量
|
|
|
|
|
- `index : var_like` 输入变量,int类型,下标索引
|
|
|
|
|
|
|
|
|
|
返回:`x[index]`的值
|
|
|
|
|
|
|
|
|
|
返回类型:`Var`
|
|
|
|
|
|
|
|
|
|
示例:
|
|
|
|
|
|
|
|
|
|
```python
|
|
|
|
|
>>> expr.gather([[1.,2.],[3.,4.]], [1])
|
2022-08-31 20:11:16 +08:00
|
|
|
|
array([[3., 4.]], dtype=float32)
|
2022-08-23 21:21:29 +08:00
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
---
|
|
|
|
|
### `gather_nd(x, indices)`
|
|
|
|
|
根据indeces描述的索引,在x中提取元素,拼接成一个新的数据
|
|
|
|
|
|
|
|
|
|
参数:
|
|
|
|
|
- `x : var_like` 输入变量
|
|
|
|
|
- `indices : var_like` 输入变量,int类型,索引
|
|
|
|
|
|
|
|
|
|
返回:`x[indices[0], ..., indices[-1]]`
|
|
|
|
|
|
|
|
|
|
返回类型:`Var`
|
|
|
|
|
|
|
|
|
|
示例:
|
|
|
|
|
|
|
|
|
|
```python
|
|
|
|
|
>>> expr.gather_nd([[1.,2.],[3.,4.]], [1, 0])
|
2022-08-31 20:11:16 +08:00
|
|
|
|
array(3., dtype=float32)
|
2022-08-23 21:21:29 +08:00
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
---
|
|
|
|
|
### `select(cond, x, y)`
|
|
|
|
|
返回根据'cond'从'x'或'y'中选择的元素
|
|
|
|
|
|
|
|
|
|
参数:
|
|
|
|
|
- `cond : var_like` 输入变量
|
|
|
|
|
- `x : var_like` 输入变量
|
|
|
|
|
- `y : var_like` 输入变量
|
|
|
|
|
|
|
|
|
|
返回:根据条件选中的元素
|
|
|
|
|
|
|
|
|
|
返回类型:`Var`
|
|
|
|
|
|
|
|
|
|
示例:
|
|
|
|
|
|
|
|
|
|
```python
|
|
|
|
|
>>> expr.select([1., 0., 2.], [-1., -2., -3.], [1., 2., 3.])
|
2022-08-31 20:11:16 +08:00
|
|
|
|
array([-1., 2., -3.], dtype=float32)
|
2022-08-23 21:21:29 +08:00
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
---
|
|
|
|
|
### `squeeze(x, axes=[])`
|
|
|
|
|
删除到指定位置的尺寸为1的新数据
|
|
|
|
|
|
|
|
|
|
参数:
|
|
|
|
|
- `x : var_like` 输入变量
|
|
|
|
|
- `axes : axis_like` 输入变量,默认为[],用来指定要删掉的为1的维度
|
|
|
|
|
|
|
|
|
|
返回:变换后的数据
|
|
|
|
|
|
|
|
|
|
返回类型:`Var`
|
|
|
|
|
|
|
|
|
|
示例:
|
|
|
|
|
|
|
|
|
|
```python
|
|
|
|
|
>>> expr.squeeze([[[1.0, 2.0]]], [0, 1])
|
2022-08-31 20:11:16 +08:00
|
|
|
|
array([1., 2.], dtype=float32)
|
2022-08-23 21:21:29 +08:00
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
---
|
|
|
|
|
### `unsqueeze(x, axes=[])`
|
|
|
|
|
插入到指定位置的尺寸为1的新数据
|
|
|
|
|
|
|
|
|
|
参数:
|
|
|
|
|
- `x : var_like` 输入变量
|
|
|
|
|
- `axes : axis_like` 输入变量,默认为[],用来指定要增加的为1的维度
|
|
|
|
|
|
|
|
|
|
返回:变换后的数据
|
|
|
|
|
|
|
|
|
|
返回类型:`Var`
|
|
|
|
|
|
|
|
|
|
示例:
|
|
|
|
|
|
|
|
|
|
```python
|
|
|
|
|
>>> expr.unsqueeze([1.0, 2.0], [0, 1])
|
2022-08-31 20:11:16 +08:00
|
|
|
|
array([[[1., 2.]]], dtype=float32)
|
2022-08-23 21:21:29 +08:00
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
---
|
|
|
|
|
### `depth_to_space(x, axis)`
|
|
|
|
|
将数据从深度重新排列为空间数据块
|
|
|
|
|
|
|
|
|
|
参数:
|
|
|
|
|
- `x : var_like` 输入变量,data_format为NHWC.
|
|
|
|
|
- `axis : int` 输入变量,操作的维度
|
|
|
|
|
|
|
|
|
|
返回:空间数据块
|
|
|
|
|
|
|
|
|
|
返回类型:`Var`
|
|
|
|
|
|
|
|
|
|
示例:
|
|
|
|
|
|
|
|
|
|
```python
|
|
|
|
|
>>> x = expr.reshape(expr.range(0., 12., 1.), [1, 4, 1, 3])
|
|
|
|
|
>>> expr.depth_to_space(x, 2)
|
2022-08-31 20:11:16 +08:00
|
|
|
|
array([[[[ 0., 3., 1., 4., 2., 5.],
|
|
|
|
|
[ 6., 9., 7., 10., 8., 11.]]]], dtype=float32)
|
2022-08-23 21:21:29 +08:00
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
---
|
|
|
|
|
### `space_to_depth(x, axis)`
|
|
|
|
|
重新排列空间数据块,进入深度。
|
|
|
|
|
|
|
|
|
|
参数:
|
|
|
|
|
- `x : var_like` 输入变量,data_format为NHWC.
|
|
|
|
|
- `axis : int` 输入变量,操作的维度
|
|
|
|
|
|
|
|
|
|
返回:空间数据块,进入深度
|
|
|
|
|
|
|
|
|
|
返回类型:`Var`
|
|
|
|
|
|
|
|
|
|
示例:
|
|
|
|
|
|
|
|
|
|
```python
|
|
|
|
|
>>> x = expr.reshape(expr.range(0., 16., 1.), [1, 1, 4, 4])
|
|
|
|
|
>>> x = expr.convert(x, expr.NHWC)
|
|
|
|
|
>>> expr.space_to_depth(x, 2)
|
2022-08-31 20:11:16 +08:00
|
|
|
|
array([[[[ 0., 1., 4., 5.],
|
|
|
|
|
[ 2., 3., 6., 7.]],
|
|
|
|
|
[[ 8., 9., 12., 13.],
|
|
|
|
|
[10., 11., 14., 15.]]]], dtype=float32)
|
2022-08-23 21:21:29 +08:00
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
---
|
|
|
|
|
### `batch_to_space_nd(x, block_shape, crops)`
|
|
|
|
|
将给定的 “batch” 从零维重构为具有“block-Shape + [batch]”形状的 “M+1” 维,其中 block-Shape 是参数,batch 是指定的张量。这里根据给定的裁剪数组对 in-between 结果进行裁剪。
|
|
|
|
|
|
|
|
|
|
参数:
|
|
|
|
|
- `x : var_like` 输入变量,data_format为NC4HW4.
|
|
|
|
|
- `block_shape : var_like` 输入变量,int类型,一维数组的形状必须为 [M],因为所有值都必须大于或等于 1
|
|
|
|
|
- `crops : var_like` 输入变量,int类型,[M, 2] 的二维数组形状,其中所有值必须大于或等于0,这里的crop[i] = [cropStart,cropEnd] 定义了从输入维度 i + 1 裁剪的部分
|
|
|
|
|
|
|
|
|
|
返回:指定批次的重塑版本的数据
|
|
|
|
|
|
|
|
|
|
返回类型:`Var`
|
|
|
|
|
|
|
|
|
|
示例:
|
|
|
|
|
|
|
|
|
|
```python
|
|
|
|
|
>>> x = expr.reshape(expr.range(0., 12., 1.), [4, 1, 1, 3])
|
|
|
|
|
>>> x = expr.convert(x, expr.NC4HW4)
|
|
|
|
|
>>> crops = expr.const([0, 0, 0, 0], [2, 2], expr.NCHW, expr.int)
|
|
|
|
|
>>> expr.convert(expr.batch_to_space_nd(x, [2, 2], crops), expr.NHWC)
|
2022-08-31 20:11:16 +08:00
|
|
|
|
array([[[[ 0.],
|
|
|
|
|
[ 3.],
|
|
|
|
|
[ 1.],
|
|
|
|
|
[ 4.],
|
|
|
|
|
[ 2.],
|
|
|
|
|
[ 5.]],
|
|
|
|
|
[[ 6.],
|
|
|
|
|
[ 9.],
|
|
|
|
|
[ 7.],
|
|
|
|
|
[10.],
|
|
|
|
|
[ 8.],
|
|
|
|
|
[11.]]]], dtype=float32)
|
2022-08-23 21:21:29 +08:00
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
---
|
|
|
|
|
### `space_to_batch_nd(x, block_shape, paddings)`
|
|
|
|
|
将指定输入空间的空间维度拆分为块的矩阵,其形状为 blockShape,其中 blockshape 是参数。这里根据指定的填充数组填充空间维度
|
|
|
|
|
|
|
|
|
|
参数:
|
|
|
|
|
- `x : var_like` 输入变量,data_format为NC4HW4.
|
|
|
|
|
- `block_shape : var_like` 输入变量,int类型,它是一维数组,必须具有 [M] 的形状,因为所有值必须大于或等于 1
|
|
|
|
|
- `paddings : var_like` 输入变量,int类型,一个形状为 [M, 2] 的二维数组,所有值必须大于或等于0。这里 padding 等于 [padStart, padEnd]
|
|
|
|
|
|
|
|
|
|
返回:指定输入空间的拆分版本的数据
|
|
|
|
|
|
|
|
|
|
返回类型:`Var`
|
|
|
|
|
|
|
|
|
|
示例:
|
|
|
|
|
|
|
|
|
|
```python
|
|
|
|
|
>>> x = expr.reshape(expr.range(0., 12., 1.), [3, 1, 2, 2])
|
|
|
|
|
>>> x = expr.convert(x, expr.NC4HW4)
|
|
|
|
|
>>> paddings = expr.const([0, 0, 0, 0], [2, 2], expr.NCHW, expr.int)
|
|
|
|
|
>>> expr.convert(expr.space_to_batch_nd(x, [2, 2], paddings), expr.NHWC)
|
2022-08-31 20:11:16 +08:00
|
|
|
|
array([[[[ 0.]]],
|
|
|
|
|
[[[ 4.]]],
|
|
|
|
|
[[[ 8.]]],
|
|
|
|
|
[[[ 1.]]],
|
|
|
|
|
[[[ 5.]]],
|
|
|
|
|
[[[ 9.]]],
|
|
|
|
|
[[[ 2.]]],
|
|
|
|
|
[[[ 6.]]],
|
|
|
|
|
[[[10.]]],
|
|
|
|
|
[[[ 3.]]],
|
|
|
|
|
[[[ 7.]]],
|
|
|
|
|
[[[11.]]]], dtype=float32)
|
2022-08-23 21:21:29 +08:00
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
---
|
|
|
|
|
### `elu(x, alpha)`
|
|
|
|
|
激励函数,主要是为计算图归一化返回结果而引进的非线性部分
|
|
|
|
|
|
|
|
|
|
参数:
|
|
|
|
|
- `x : var_like` 输入变量
|
|
|
|
|
- `alpha : float` 输入变量,预定义常量
|
|
|
|
|
|
|
|
|
|
返回:
|
|
|
|
|
|
|
|
|
|
返回类型:`Var`
|
|
|
|
|
|
|
|
|
|
示例:
|
|
|
|
|
|
|
|
|
|
```python
|
|
|
|
|
>>> expr.elu([-1.0, 2.0], 1.673263)
|
2022-08-31 20:11:16 +08:00
|
|
|
|
array([-1.0577048, 2.], dtype=float32)
|
2022-08-23 21:21:29 +08:00
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
---
|
|
|
|
|
### `selu(x, scale, alpha)`
|
|
|
|
|
比例指数线性单元激活函数
|
|
|
|
|
|
|
|
|
|
参数:
|
|
|
|
|
- `x : var_like` 输入变量
|
|
|
|
|
- `scale : float` 输入变量,预定义常量
|
|
|
|
|
- `alpha : float` 输入变量,预定义常量
|
|
|
|
|
|
|
|
|
|
返回:缩放的指数单位激活: scale * elu(x, alpha).
|
|
|
|
|
|
|
|
|
|
返回类型:`Var`
|
|
|
|
|
|
|
|
|
|
示例:
|
|
|
|
|
|
|
|
|
|
```python
|
|
|
|
|
>>> expr.selu([-1.0, 2.0], 1.0507, 1.673263)
|
2022-08-31 20:11:16 +08:00
|
|
|
|
array([-1.1113304, 2.1014], dtype=float32)
|
2022-08-23 21:21:29 +08:00
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
---
|
|
|
|
|
### `matrix_band_part(x, num_lower, num_upper)`
|
|
|
|
|
计算矩阵维度
|
|
|
|
|
|
|
|
|
|
参数:
|
|
|
|
|
- `x : var_like` 输入变量
|
|
|
|
|
- `num_lower : var_like` 输入变量,int类型,要保持的对角线的数量,如果为负,则保留整个下三角
|
|
|
|
|
- `num_upper : var_like` 输入变量,int类型,要保留的superdiagonals数,如果为负,则保持整个上三角.
|
|
|
|
|
|
|
|
|
|
返回:返回一个与 x 具有相同的类型且有相同形状的秩为k的数据,提取的带状数据
|
|
|
|
|
|
|
|
|
|
返回类型:`Var`
|
|
|
|
|
|
|
|
|
|
示例:
|
|
|
|
|
|
|
|
|
|
```python
|
|
|
|
|
>>> expr.matrix_band_part([[-2., 1.], [-1., 2.]], 1, -1)
|
2022-08-31 20:11:16 +08:00
|
|
|
|
array([[-2., 1.],
|
|
|
|
|
[-1., 2.]], dtype=float32)
|
2022-08-23 21:21:29 +08:00
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
---
|
|
|
|
|
### `moments(x, axes=[2, 3], shift=None, keep_dims=True)`
|
|
|
|
|
用于在指定维度计算均值和方差
|
|
|
|
|
|
|
|
|
|
参数:
|
|
|
|
|
- `x : var_like` 输入变量,data_format为NC4HW4
|
|
|
|
|
- `axes : axis_like` 输入变量,int类型,指定计算均值和方差的轴,默认是[2,3]
|
|
|
|
|
- `shift : var_like` 输入变量,int类型,未在当前实现中使用,默认是None
|
|
|
|
|
- `keep_dims : bool` 输入变量,保持维度,表示产生是否与输入数据具有相同的维度,默认是true
|
|
|
|
|
|
|
|
|
|
返回:均值和方差
|
|
|
|
|
|
|
|
|
|
返回类型:`Var`
|
|
|
|
|
|
|
|
|
|
示例:
|
|
|
|
|
|
|
|
|
|
```python
|
|
|
|
|
>>> x = expr.reshape(expr.range(0., 4., 1.), [1, 1, 2, 2])
|
|
|
|
|
>>> x = expr.convert(x, expr.NC4HW4)
|
|
|
|
|
>>> expr.moments(x)
|
2022-08-31 20:11:16 +08:00
|
|
|
|
[array([[[[1.5]]]], dtype=float32), array([[[[1.25]]]], dtype=float32)]
|
2022-08-23 21:21:29 +08:00
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
---
|
|
|
|
|
### `setdiff1d(x, y)`
|
|
|
|
|
返回在x中出现,但是在y中没有出现的的元素
|
|
|
|
|
|
|
|
|
|
参数:
|
|
|
|
|
- `x : var_like` 输入变量
|
|
|
|
|
- `y : var_like` 输入变量
|
|
|
|
|
|
|
|
|
|
返回:在x中出现,但是在y中没有出现的的元素
|
|
|
|
|
|
|
|
|
|
返回类型:`Var`
|
|
|
|
|
|
|
|
|
|
示例:
|
|
|
|
|
|
|
|
|
|
```python
|
|
|
|
|
>>> expr.setdiff1d([1, 2, 3], [2, 3, 4])
|
2022-08-31 20:11:16 +08:00
|
|
|
|
array([1], dtype=int32)
|
2022-08-23 21:21:29 +08:00
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
---
|
|
|
|
|
### `zeros_like(x)`
|
|
|
|
|
把所有元素都置为零
|
|
|
|
|
|
|
|
|
|
参数:
|
|
|
|
|
- `x : var_like` 输入变量
|
|
|
|
|
|
|
|
|
|
返回:所有元素都为零的张量
|
|
|
|
|
|
|
|
|
|
返回类型:`Var`
|
|
|
|
|
|
|
|
|
|
示例:
|
|
|
|
|
|
|
|
|
|
```python
|
|
|
|
|
>>> expr.zeros_like([[1, 2], [3, 4]])
|
2022-08-31 20:11:16 +08:00
|
|
|
|
array([[0, 0],
|
|
|
|
|
[0, 0]], dtype=int32)
|
2022-08-23 21:21:29 +08:00
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
---
|
|
|
|
|
### `range(start, limit, delta)`
|
|
|
|
|
创建数字序列变量
|
|
|
|
|
|
|
|
|
|
参数:
|
|
|
|
|
- `start : var_like` 输入变量,int类型,表示范围的起始编号
|
|
|
|
|
- `limit : var_like` 输入变量,int类型,最大编号限制,并且不包括在内
|
|
|
|
|
- `delta : var_like` 输入变量,int类型,增量
|
|
|
|
|
|
|
|
|
|
返回:数字序列变量
|
|
|
|
|
|
|
|
|
|
返回类型:`Var`
|
|
|
|
|
|
|
|
|
|
示例:
|
|
|
|
|
|
|
|
|
|
```python
|
|
|
|
|
>>> expr.range(1.0, 7.0, 2.0)
|
2022-08-31 20:11:16 +08:00
|
|
|
|
array([1., 3., 5.], dtype=float32)
|
2022-08-23 21:21:29 +08:00
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
---
|
|
|
|
|
### `sort(x, axis=-1, arg=False, descend=False)`
|
|
|
|
|
排序
|
|
|
|
|
|
|
|
|
|
参数:
|
|
|
|
|
- `x : var_like` 输入变量
|
|
|
|
|
- `axis : int` 输入变量,int类型
|
|
|
|
|
- `arg : bool` 输入变量,是否返回排序元素的index, 默认为false
|
|
|
|
|
- `descend : bool` 输入变量,true代表倒序,false代表正序,默认为false
|
|
|
|
|
|
|
|
|
|
返回:排序结果
|
|
|
|
|
|
|
|
|
|
返回类型:`Var`
|
|
|
|
|
|
|
|
|
|
示例:
|
|
|
|
|
|
|
|
|
|
```python
|
|
|
|
|
>>> expr.sort([[5, 0], [1, 3]])
|
2022-08-31 20:11:16 +08:00
|
|
|
|
array([[1, 0],
|
|
|
|
|
[5, 3]], dtype=int32)
|
2022-08-23 21:21:29 +08:00
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
---
|
|
|
|
|
### `nms(boxes, scores, max_detections, iou_threshold=-1.0, score_threshold=-1.0)`
|
|
|
|
|
非极大值抑制算法,搜索局部极大值,抑制非极大值元素
|
|
|
|
|
|
|
|
|
|
参数:
|
|
|
|
|
- `boxes : var_like` 输入变量,形状必须为[num, 4]
|
|
|
|
|
- `scores : var_like` 输入变量,float类型的大小为[num_boxes]代表上面boxes的每一行,对应的每一个box的一个score
|
|
|
|
|
- `max_detections : int` 输入变量,一个整数张量,代表最多可以利用NMS选中多少个边框
|
|
|
|
|
- `iou_threshold : float` 输入变量,IOU阙值展示的是否与选中的那个边框具有较大的重叠度,默认为0
|
|
|
|
|
- `score_threshold : float` 输入变量,默认为float_min,来决定什么时候删除这个边框
|
|
|
|
|
|
|
|
|
|
返回:搜索局部极大值,抑制非极大值元素
|
|
|
|
|
|
|
|
|
|
返回类型:`Var`
|
|
|
|
|
|
|
|
|
|
示例:
|
|
|
|
|
|
|
|
|
|
```python
|
|
|
|
|
>>> expr.nms([[1, 1, 4, 4], [0, 0, 3, 3], [5, 5, 7, 7]], [0.9, 0.5, 0.1], 3, 0.1)
|
2022-08-31 20:11:16 +08:00
|
|
|
|
array([0, 2], dtype=int32)
|
|
|
|
|
array([5., 4.5])
|
2022-09-09 17:21:11 +08:00
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
---
|
|
|
|
|
### `raster(vars, region, shape)`
|
|
|
|
|
使用`Raster`创建一个映射关系,`Raster`是表示内存映射的元算子;
|
|
|
|
|
`region`使用`[int]`来描述;其表示了从`var`到结果的内存映射关系,对应的C++数据结构如下:
|
|
|
|
|
```cpp
|
|
|
|
|
struct View {
|
|
|
|
|
int32_t offset = 0;
|
|
|
|
|
int32_t stride[3] = {1, 1, 1};
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
struct Region {
|
|
|
|
|
View src;
|
|
|
|
|
View dst;
|
|
|
|
|
int32_t size[3] = {1, 1, 1};
|
|
|
|
|
};
|
|
|
|
|
```
|
|
|
|
|
在Python中使用11个`int`来表示Region,顺序为:`src_offset, src_stride[3], dst_offset, dst_stride[3], size[3]`;多个region则继续增加int数目,总数目应该为11的倍数;并且region的数目应该与vars的数目相等
|
|
|
|
|
|
|
|
|
|
参数:
|
|
|
|
|
- `var : [Var]` 输入变量,内存映射的数据来源
|
|
|
|
|
- `region : [int]` 表示内存映射关系
|
|
|
|
|
- `shape : [int]` 输出变量的形状
|
|
|
|
|
|
|
|
|
|
返回:内存映射后的变量
|
|
|
|
|
|
|
|
|
|
返回类型:`Var`
|
|
|
|
|
|
|
|
|
|
示例:
|
|
|
|
|
|
|
|
|
|
```python
|
|
|
|
|
>>> var = expr.const([1., 2., 3. ,4.], [2, 2])
|
|
|
|
|
>>> expr.raster([var], [0, 4, 1, 2, 0, 4, 2, 1, 1, 2, 2], [2, 2]) # do transpose
|
|
|
|
|
array([[1., 3.],
|
|
|
|
|
[2., 4.]], dtype=float32)
|
|
|
|
|
```
|
|
|
|
|
|
2023-04-27 15:11:05 +08:00
|
|
|
|
---
|
|
|
|
|
### `quant(var, scale, min=-128, max=127, zero=0)`
|
|
|
|
|
量化,根据`scale`把float类型的输入量化为int8类型的输出,量化公式为:`y = clamp(x / scale + zero, min, max)`
|
|
|
|
|
|
|
|
|
|
参数:
|
|
|
|
|
- `var : Var` 输入变量,dtype为`float`, data_format为`NC4HW4`
|
|
|
|
|
- `scale : Var` 量化的scale值,dtype为`float`
|
|
|
|
|
- `min : int` 输出变量的最小值,默认为-128
|
|
|
|
|
- `max : int` 输出变量的最大值,默认为127
|
|
|
|
|
- `zero : int` 零点值,默认为0
|
|
|
|
|
|
|
|
|
|
返回:量化后的int8类型变量
|
|
|
|
|
|
|
|
|
|
返回类型:`Var`
|
|
|
|
|
|
|
|
|
|
示例:
|
|
|
|
|
|
|
|
|
|
```python
|
|
|
|
|
>>> x = expr.const([1., 2., 3. ,4.], [4])
|
|
|
|
|
>>> x = expr.convert(x, expr.NC4HW4)
|
|
|
|
|
>>> expr.quant(x, 0.2, -128, 127)
|
|
|
|
|
array([-128, -128, -127, -127], dtype=int8)
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
---
|
|
|
|
|
### `dequant(var, scale, zero=0)`
|
|
|
|
|
反量化,根据`scale`把int8类型的输入反量化为float类型的输出,量化公式为:`y = (x - zero) * scale`
|
|
|
|
|
|
|
|
|
|
参数:
|
|
|
|
|
- `var : Var` 输入变量,dtype为int8
|
|
|
|
|
- `scale : Var` 反量化的scale值,dtype为float
|
|
|
|
|
- `zero : int` 反量化的zero值,默认为0
|
|
|
|
|
|
|
|
|
|
返回:反量化后的float类型变量
|
|
|
|
|
|
|
|
|
|
返回类型:`Var`
|
|
|
|
|
|
|
|
|
|
示例:
|
|
|
|
|
|
|
|
|
|
```python
|
|
|
|
|
>>> x = expr.const([-128, -128, -127, -127], [4], NCHW, expr.int8)
|
|
|
|
|
>>> x = expr.convert(x, expr.NC4HW4)
|
|
|
|
|
>>> expr.dequant(x, 0.2, 0)
|
|
|
|
|
array([0. , 0. , 0.2, 0.2], dtype=float32)
|
|
|
|
|
```
|
|
|
|
|
|
2022-09-09 17:21:11 +08:00
|
|
|
|
---
|
|
|
|
|
### `histogram(input, binNum, minVal, maxVal)`
|
|
|
|
|
计算输入变量在指定范围内的直方图分布
|
|
|
|
|
|
|
|
|
|
参数:
|
|
|
|
|
- `input : var_like` 输入变量
|
|
|
|
|
- `binNum : int` 直方图桶的个数
|
|
|
|
|
- `minVal : int` 直方图计算的最小值
|
|
|
|
|
- `maxVal : int` 直方图计算的最大值
|
|
|
|
|
|
|
|
|
|
返回:直方图统计结果
|
|
|
|
|
|
|
|
|
|
返回类型:`Var`
|
|
|
|
|
|
|
|
|
|
示例:
|
|
|
|
|
|
|
|
|
|
```python
|
|
|
|
|
>>> expr.histogram(expr.range(0., 10.0, 1.0), 5, 1, 9)
|
|
|
|
|
array([2., 2., 1., 2., 2.], dtype=float32)
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
---
|
|
|
|
|
### `detection_post_process(encode_boxes, class_predictions, anchors, num_classes, max_detections, max_class_per_detection, detections_per_class, nms_threshold, iou_threshold, use_regular_nms, centersize_encoding)`
|
|
|
|
|
SSD检测模型后处理函数
|
|
|
|
|
|
|
|
|
|
参数:
|
|
|
|
|
- `encode_boxes : Var` 检测框坐标
|
|
|
|
|
- `class_predictions : Var` 分类结果概率
|
|
|
|
|
- `anchors : Var` 锚点
|
|
|
|
|
- `num_classes : int` 分类个数
|
|
|
|
|
- `max_detections : int` 最大检测值
|
|
|
|
|
- `max_class_per_detection : int` 每个检测的最大种类
|
|
|
|
|
- `detections_per_class : int` 每个类别的检测结果
|
|
|
|
|
- `nms_threshold : float` nms阈值
|
|
|
|
|
- `iou_threshold : float` iou阈值
|
|
|
|
|
- `use_regular_nms : bool` 是否使用常规nms,目前仅支持`False`
|
|
|
|
|
- `centersize_encoding : [float]` 中心尺寸编码
|
|
|
|
|
|
|
|
|
|
返回:后处理结果
|
|
|
|
|
|
2023-04-27 15:11:05 +08:00
|
|
|
|
返回类型:`Var`
|
|
|
|
|
|
|
|
|
|
---
|
|
|
|
|
### `roi_pooling(input, roi, pooledHeight, pooledWidth, spatialScale, outputGrad, backwardDiff)`
|
|
|
|
|
roi_pooling
|
|
|
|
|
|
|
|
|
|
参数:
|
|
|
|
|
- `input : Var` 输入变量,dtype为int8
|
|
|
|
|
- `roi : Var` 反量化的scale值,dtype为float
|
|
|
|
|
- `pooledHeight : int` 反量化的zero值,默认为0
|
|
|
|
|
- `pooledWidth : int` 反量化的zero值,默认为0
|
|
|
|
|
|
|
|
|
|
返回:roipooling结果
|
|
|
|
|
|
|
|
|
|
返回类型:`Var`
|
|
|
|
|
|
|
|
|
|
示例:
|
|
|
|
|
|
|
|
|
|
```python
|
|
|
|
|
TODO
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
---
|
|
|
|
|
### `roi_align(input, roi, pooledHeight, pooledWidth, spatialScale, samplingRatio, aligned, poolType, outputGrad, backwardDiff)`
|
|
|
|
|
|
|
|
|
|
roialign
|
|
|
|
|
|
|
|
|
|
参数:
|
|
|
|
|
- `input : Var` 输入变量,dtype为int8
|
|
|
|
|
- `roi : Var` 反量化的scale值,dtype为float
|
|
|
|
|
- `pooledHeight : int` pooling的
|
|
|
|
|
- `pooledHeight : int` 反量化的zero值,默认为0
|
|
|
|
|
|
|
|
|
|
返回:roialign结果
|
|
|
|
|
|
|
|
|
|
返回类型:`Var`
|
|
|
|
|
|
|
|
|
|
示例:
|
|
|
|
|
|
|
|
|
|
```python
|
|
|
|
|
TODO
|
2023-08-21 14:51:54 +08:00
|
|
|
|
```
|
|
|
|
|
---
|
|
|
|
|
**以下函数为框架开发者使用函数,普通用户不建议使用!**
|
|
|
|
|
|
|
|
|
|
---
|
|
|
|
|
### `load_as_dict(fileName)` *[deprecated]*
|
|
|
|
|
从文件中加载模型,并将模型转换为计算图,以`dict`的形式返回计算图的所有节点名称和`Var`
|
|
|
|
|
|
|
|
|
|
*不建议使用该接口*
|
|
|
|
|
|
|
|
|
|
参数:
|
|
|
|
|
- `fileName:str` 模型文件路径
|
|
|
|
|
|
|
|
|
|
返回:加载的模型计算图,其`key`为`str`,`value`为`Var`
|
|
|
|
|
|
|
|
|
|
返回类型:`dict`
|
|
|
|
|
|
|
|
|
|
示例:
|
|
|
|
|
|
|
|
|
|
```python
|
|
|
|
|
>>> vars = expr.load_as_dict('mobilenet_v1.mnn')
|
|
|
|
|
>>> vars.keys()
|
|
|
|
|
dict_keys(['conv1', 'conv2_1/dw', 'conv2_1/sep', 'conv2_2/dw', 'conv2_2/sep', 'conv3_1/dw', 'conv3_1/sep', 'conv3_2/dw', 'conv3_2/sep', 'conv4_1/dw', 'conv4_1/sep', 'conv4_2/dw', 'conv4_2/sep', 'conv5_1/dw', 'conv5_1/sep', 'conv5_2/dw', 'conv5_2/sep', 'conv5_3/dw', 'conv5_3/sep', 'conv5_4/dw', 'conv5_4/sep', 'conv5_5/dw', 'conv5_5/sep', 'conv5_6/dw', 'conv5_6/sep', 'conv6/dw', 'conv6/sep', 'data', 'fc7', 'pool6', 'prob'])
|
|
|
|
|
```
|
|
|
|
|
---
|
|
|
|
|
### `get_inputs_and_outputs(allVariable)` *[deprecated]*
|
|
|
|
|
获取`dict`形式计算图的输入输出节点,可以在使用V3接口时获取输入输出的信息
|
|
|
|
|
|
|
|
|
|
参数:
|
|
|
|
|
- `allVariable:dict` 计算图的`dict`形式,其`key`为`str`,`value`为`Var`
|
|
|
|
|
|
|
|
|
|
返回:计算图的输入输出,其中输入输出都为`dict`形式,其`key`为`str`,`value`为`Var`
|
|
|
|
|
|
|
|
|
|
返回类型:`(dict, dict)`
|
|
|
|
|
|
|
|
|
|
示例:
|
|
|
|
|
|
|
|
|
|
```python
|
|
|
|
|
>>> vars = expr.load_as_dict('mobilenet_v1.mnn')
|
|
|
|
|
>>> inputs, outputs = expr.get_inputs_and_outputs(vars)
|
|
|
|
|
>>> inputs.keys()
|
|
|
|
|
dict_keys(['data'])
|
|
|
|
|
>>> outputs.keys()
|
|
|
|
|
dict_keys(['prob'])
|
2023-04-27 15:11:05 +08:00
|
|
|
|
```
|