mirror of https://github.com/alibaba/MNN.git
1616 lines
55 KiB
C
1616 lines
55 KiB
C
|
/*
|
||
|
* Copyright 2006 The Android Open Source Project
|
||
|
*
|
||
|
* Use of this source code is governed by a BSD-style license that can be
|
||
|
* found in the LICENSE file.
|
||
|
*/
|
||
|
|
||
|
/* Generated by tools/bookmaker from include/core/Matrix.h and docs/SkMatrix_Reference.bmh
|
||
|
on 2018-07-13 08:15:11. Additional documentation and examples can be found at:
|
||
|
https://skia.org/user/api/SkMatrix_Reference
|
||
|
|
||
|
You may edit either file directly. Structural changes to public interfaces require
|
||
|
editing both files. After editing docs/SkMatrix_Reference.bmh, run:
|
||
|
bookmaker -b docs -i include/core/Matrix.h -p
|
||
|
to create an updated version of this file.
|
||
|
*/
|
||
|
|
||
|
|
||
|
//
|
||
|
// Modified by jiangxiaotang on 2018/09/19.
|
||
|
// Copyright © 2018, Alibaba Group Holding Limited
|
||
|
//
|
||
|
|
||
|
#ifndef MNN_Matrix_DEFINED
|
||
|
#define MNN_Matrix_DEFINED
|
||
|
|
||
|
#include <string.h>
|
||
|
#include <cstdint>
|
||
|
#include <MNN/Rect.h>
|
||
|
|
||
|
namespace MNN {
|
||
|
namespace CV {
|
||
|
|
||
|
/** \class Matrix
|
||
|
Matrix holds a 3x3 matrix for transforming coordinates. This allows mapping
|
||
|
Point and vectors with translation, scaling, skewing, rotation, and
|
||
|
perspective.
|
||
|
|
||
|
Matrix elements are in row major order. Matrix does not have a constructor,
|
||
|
so it must be explicitly initialized. setIdentity() initializes Matrix
|
||
|
so it has no effect. setTranslate(), setScale(), setSkew(), setRotate(), set9 and setAll()
|
||
|
initializes all Matrix elements with the corresponding mapping.
|
||
|
|
||
|
Matrix includes a hidden variable that classifies the type of matrix to
|
||
|
improve performance. Matrix is not thread safe unless getType() is called first.
|
||
|
*/
|
||
|
|
||
|
class MNN_PUBLIC Matrix {
|
||
|
public:
|
||
|
Matrix() {
|
||
|
setIdentity();
|
||
|
}
|
||
|
|
||
|
/** Sets Matrix to scale by (sx, sy). Returned matrix is:
|
||
|
|
||
|
| sx 0 0 |
|
||
|
| 0 sy 0 |
|
||
|
| 0 0 1 |
|
||
|
|
||
|
@param sx horizontal scale factor
|
||
|
@param sy vertical scale factor
|
||
|
@return Matrix with scale
|
||
|
*/
|
||
|
static Matrix MakeScale(float sx, float sy) {
|
||
|
Matrix m;
|
||
|
m.setScale(sx, sy);
|
||
|
return m;
|
||
|
}
|
||
|
|
||
|
/** Sets Matrix to scale by (scale, scale). Returned matrix is:
|
||
|
|
||
|
| scale 0 0 |
|
||
|
| 0 scale 0 |
|
||
|
| 0 0 1 |
|
||
|
|
||
|
@param scale horizontal and vertical scale factor
|
||
|
@return Matrix with scale
|
||
|
*/
|
||
|
static Matrix MakeScale(float scale) {
|
||
|
Matrix m;
|
||
|
m.setScale(scale, scale);
|
||
|
return m;
|
||
|
}
|
||
|
|
||
|
/** Sets Matrix to translate by (dx, dy). Returned matrix is:
|
||
|
|
||
|
| 1 0 dx |
|
||
|
| 0 1 dy |
|
||
|
| 0 0 1 |
|
||
|
|
||
|
@param dx horizontal translation
|
||
|
@param dy vertical translation
|
||
|
@return Matrix with translation
|
||
|
*/
|
||
|
static Matrix MakeTrans(float dx, float dy) {
|
||
|
Matrix m;
|
||
|
m.setTranslate(dx, dy);
|
||
|
return m;
|
||
|
}
|
||
|
|
||
|
/** Sets Matrix to:
|
||
|
|
||
|
| scaleX skewX transX |
|
||
|
| skewY scaleY transY |
|
||
|
| pers0 pers1 pers2 |
|
||
|
|
||
|
@param scaleX horizontal scale factor
|
||
|
@param skewX horizontal skew factor
|
||
|
@param transX horizontal translation
|
||
|
@param skewY vertical skew factor
|
||
|
@param scaleY vertical scale factor
|
||
|
@param transY vertical translation
|
||
|
@param pers0 input x-axis perspective factor
|
||
|
@param pers1 input y-axis perspective factor
|
||
|
@param pers2 perspective scale factor
|
||
|
@return Matrix constructed from parameters
|
||
|
*/
|
||
|
static Matrix MakeAll(float scaleX, float skewX, float transX, float skewY, float scaleY, float transY, float pers0,
|
||
|
float pers1, float pers2) {
|
||
|
Matrix m;
|
||
|
m.setAll(scaleX, skewX, transX, skewY, scaleY, transY, pers0, pers1, pers2);
|
||
|
return m;
|
||
|
}
|
||
|
|
||
|
/** \enum Matrix::TypeMask
|
||
|
Enum of bit fields for mask returned by getType().
|
||
|
Used to identify the complexity of Matrix, to optimize performance.
|
||
|
*/
|
||
|
enum TypeMask {
|
||
|
kIdentity_Mask = 0, //!< identity Matrix; all bits clear
|
||
|
kTranslate_Mask = 0x01, //!< translation Matrix
|
||
|
kScale_Mask = 0x02, //!< scale Matrix
|
||
|
kAffine_Mask = 0x04, //!< skew or rotate Matrix
|
||
|
kPerspective_Mask = 0x08, //!< perspective Matrix
|
||
|
};
|
||
|
|
||
|
/** Returns a bit field describing the transformations the matrix may
|
||
|
perform. The bit field is computed conservatively, so it may include
|
||
|
false positives. For example, when kPerspective_Mask is set, all
|
||
|
other bits are set.
|
||
|
|
||
|
@return kIdentity_Mask, or combinations of: kTranslate_Mask, kScale_Mask,
|
||
|
kAffine_Mask, kPerspective_Mask
|
||
|
*/
|
||
|
TypeMask getType() const {
|
||
|
if (fTypeMask & kUnknown_Mask) {
|
||
|
fTypeMask = this->computeTypeMask();
|
||
|
}
|
||
|
// only return the public masks
|
||
|
return (TypeMask)(fTypeMask & 0xF);
|
||
|
}
|
||
|
|
||
|
/** Returns true if Matrix is identity. Identity matrix is:
|
||
|
|
||
|
| 1 0 0 |
|
||
|
| 0 1 0 |
|
||
|
| 0 0 1 |
|
||
|
|
||
|
@return true if Matrix has no effect
|
||
|
*/
|
||
|
bool isIdentity() const {
|
||
|
return this->getType() == 0;
|
||
|
}
|
||
|
|
||
|
/** Returns true if Matrix at most scales and translates. Matrix may be identity,
|
||
|
contain only scale elements, only translate elements, or both. Matrix form is:
|
||
|
|
||
|
| scale-x 0 translate-x |
|
||
|
| 0 scale-y translate-y |
|
||
|
| 0 0 1 |
|
||
|
|
||
|
@return true if Matrix is identity; or scales, translates, or both
|
||
|
*/
|
||
|
bool isScaleTranslate() const {
|
||
|
return !(this->getType() & ~(kScale_Mask | kTranslate_Mask));
|
||
|
}
|
||
|
|
||
|
/** Returns true if Matrix is identity, or translates. Matrix form is:
|
||
|
|
||
|
| 1 0 translate-x |
|
||
|
| 0 1 translate-y |
|
||
|
| 0 0 1 |
|
||
|
|
||
|
@return true if Matrix is identity, or translates
|
||
|
*/
|
||
|
bool isTranslate() const {
|
||
|
return !(this->getType() & ~(kTranslate_Mask));
|
||
|
}
|
||
|
|
||
|
/** Returns true Matrix maps Rect to another Rect. If true, Matrix is identity,
|
||
|
or scales, or rotates a multiple of 90 degrees, or mirrors on axes. In all
|
||
|
cases, Matrix may also have translation. Matrix form is either:
|
||
|
|
||
|
| scale-x 0 translate-x |
|
||
|
| 0 scale-y translate-y |
|
||
|
| 0 0 1 |
|
||
|
|
||
|
or
|
||
|
|
||
|
| 0 rotate-x translate-x |
|
||
|
| rotate-y 0 translate-y |
|
||
|
| 0 0 1 |
|
||
|
|
||
|
for non-zero values of scale-x, scale-y, rotate-x, and rotate-y.
|
||
|
|
||
|
Also called preservesAxisAlignment(); use the one that provides better inline
|
||
|
documentation.
|
||
|
|
||
|
@return true if Matrix maps one Rect into another
|
||
|
*/
|
||
|
bool rectStaysRect() const {
|
||
|
if (fTypeMask & kUnknown_Mask) {
|
||
|
fTypeMask = this->computeTypeMask();
|
||
|
}
|
||
|
return (fTypeMask & kRectStaysRect_Mask) != 0;
|
||
|
}
|
||
|
|
||
|
/** Returns true Matrix maps Rect to another Rect. If true, Matrix is identity,
|
||
|
or scales, or rotates a multiple of 90 degrees, or mirrors on axes. In all
|
||
|
cases, Matrix may also have translation. Matrix form is either:
|
||
|
|
||
|
| scale-x 0 translate-x |
|
||
|
| 0 scale-y translate-y |
|
||
|
| 0 0 1 |
|
||
|
|
||
|
or
|
||
|
|
||
|
| 0 rotate-x translate-x |
|
||
|
| rotate-y 0 translate-y |
|
||
|
| 0 0 1 |
|
||
|
|
||
|
for non-zero values of scale-x, scale-y, rotate-x, and rotate-y.
|
||
|
|
||
|
Also called rectStaysRect(); use the one that provides better inline
|
||
|
documentation.
|
||
|
|
||
|
@return true if Matrix maps one Rect into another
|
||
|
*/
|
||
|
bool preservesAxisAlignment() const {
|
||
|
return this->rectStaysRect();
|
||
|
}
|
||
|
|
||
|
/** Matrix organizes its values in row order. These members correspond to
|
||
|
each value in Matrix.
|
||
|
*/
|
||
|
static constexpr int kMScaleX = 0; //!< horizontal scale factor
|
||
|
static constexpr int kMSkewX = 1; //!< horizontal skew factor
|
||
|
static constexpr int kMTransX = 2; //!< horizontal translation
|
||
|
static constexpr int kMSkewY = 3; //!< vertical skew factor
|
||
|
static constexpr int kMScaleY = 4; //!< vertical scale factor
|
||
|
static constexpr int kMTransY = 5; //!< vertical translation
|
||
|
static constexpr int kMPersp0 = 6; //!< input x perspective factor
|
||
|
static constexpr int kMPersp1 = 7; //!< input y perspective factor
|
||
|
static constexpr int kMPersp2 = 8; //!< perspective bias
|
||
|
|
||
|
/** Affine arrays are in column major order to match the matrix used by
|
||
|
PDF and XPS.
|
||
|
*/
|
||
|
static constexpr int kAScaleX = 0; //!< horizontal scale factor
|
||
|
static constexpr int kASkewY = 1; //!< vertical skew factor
|
||
|
static constexpr int kASkewX = 2; //!< horizontal skew factor
|
||
|
static constexpr int kAScaleY = 3; //!< vertical scale factor
|
||
|
static constexpr int kATransX = 4; //!< horizontal translation
|
||
|
static constexpr int kATransY = 5; //!< vertical translation
|
||
|
|
||
|
/** Returns one matrix value. Asserts if index is out of range and SK_DEBUG is
|
||
|
defined.
|
||
|
|
||
|
@param index one of: kMScaleX, kMSkewX, kMTransX, kMSkewY, kMScaleY, kMTransY,
|
||
|
kMPersp0, kMPersp1, kMPersp2
|
||
|
@return value corresponding to index
|
||
|
*/
|
||
|
float operator[](int index) const {
|
||
|
MNN_ASSERT((unsigned)index < 9);
|
||
|
return fMat[index];
|
||
|
}
|
||
|
|
||
|
/** Returns one matrix value. Asserts if index is out of range and SK_DEBUG is
|
||
|
defined.
|
||
|
|
||
|
@param index one of: kMScaleX, kMSkewX, kMTransX, kMSkewY, kMScaleY, kMTransY,
|
||
|
kMPersp0, kMPersp1, kMPersp2
|
||
|
@return value corresponding to index
|
||
|
*/
|
||
|
float get(int index) const {
|
||
|
MNN_ASSERT((unsigned)index < 9);
|
||
|
return fMat[index];
|
||
|
}
|
||
|
|
||
|
/** Returns scale factor multiplied by x-axis input, contributing to x-axis output.
|
||
|
With mapPoints(), scales Point along the x-axis.
|
||
|
|
||
|
@return horizontal scale factor
|
||
|
*/
|
||
|
float getScaleX() const {
|
||
|
return fMat[kMScaleX];
|
||
|
}
|
||
|
|
||
|
/** Returns scale factor multiplied by y-axis input, contributing to y-axis output.
|
||
|
With mapPoints(), scales Point along the y-axis.
|
||
|
|
||
|
@return vertical scale factor
|
||
|
*/
|
||
|
float getScaleY() const {
|
||
|
return fMat[kMScaleY];
|
||
|
}
|
||
|
|
||
|
/** Returns scale factor multiplied by x-axis input, contributing to y-axis output.
|
||
|
With mapPoints(), skews Point along the y-axis.
|
||
|
Skewing both axes can rotate Point.
|
||
|
|
||
|
@return vertical skew factor
|
||
|
*/
|
||
|
float getSkewY() const {
|
||
|
return fMat[kMSkewY];
|
||
|
}
|
||
|
|
||
|
/** Returns scale factor multiplied by y-axis input, contributing to x-axis output.
|
||
|
With mapPoints(), skews Point along the x-axis.
|
||
|
Skewing both axes can rotate Point.
|
||
|
|
||
|
@return horizontal scale factor
|
||
|
*/
|
||
|
float getSkewX() const {
|
||
|
return fMat[kMSkewX];
|
||
|
}
|
||
|
|
||
|
/** Returns translation contributing to x-axis output.
|
||
|
With mapPoints(), moves Point along the x-axis.
|
||
|
|
||
|
@return horizontal translation factor
|
||
|
*/
|
||
|
float getTranslateX() const {
|
||
|
return fMat[kMTransX];
|
||
|
}
|
||
|
|
||
|
/** Returns translation contributing to y-axis output.
|
||
|
With mapPoints(), moves Point along the y-axis.
|
||
|
|
||
|
@return vertical translation factor
|
||
|
*/
|
||
|
float getTranslateY() const {
|
||
|
return fMat[kMTransY];
|
||
|
}
|
||
|
|
||
|
/** Returns factor scaling input x-axis relative to input y-axis.
|
||
|
|
||
|
@return input x-axis perspective factor
|
||
|
*/
|
||
|
float getPerspX() const {
|
||
|
return fMat[kMPersp0];
|
||
|
}
|
||
|
|
||
|
/** Returns factor scaling input y-axis relative to input x-axis.
|
||
|
|
||
|
@return input y-axis perspective factor
|
||
|
*/
|
||
|
float getPerspY() const {
|
||
|
return fMat[kMPersp1];
|
||
|
}
|
||
|
|
||
|
/** Returns writable Matrix value. Asserts if index is out of range and SK_DEBUG is
|
||
|
defined. Clears internal cache anticipating that caller will change Matrix value.
|
||
|
|
||
|
Next call to read Matrix state may recompute cache; subsequent writes to Matrix
|
||
|
value must be followed by dirtyMatrixTypeCache().
|
||
|
|
||
|
@param index one of: kMScaleX, kMSkewX, kMTransX, kMSkewY, kMScaleY, kMTransY,
|
||
|
kMPersp0, kMPersp1, kMPersp2
|
||
|
@return writable value corresponding to index
|
||
|
*/
|
||
|
float& operator[](int index) {
|
||
|
MNN_ASSERT((unsigned)index < 9);
|
||
|
this->setTypeMask(kUnknown_Mask);
|
||
|
return fMat[index];
|
||
|
}
|
||
|
|
||
|
/** Sets Matrix value. Asserts if index is out of range and SK_DEBUG is
|
||
|
defined. Safer than operator[]; internal cache is always maintained.
|
||
|
|
||
|
@param index one of: kMScaleX, kMSkewX, kMTransX, kMSkewY, kMScaleY, kMTransY,
|
||
|
kMPersp0, kMPersp1, kMPersp2
|
||
|
@param value scalar to store in Matrix
|
||
|
*/
|
||
|
void set(int index, float value) {
|
||
|
MNN_ASSERT((unsigned)index < 9);
|
||
|
fMat[index] = value;
|
||
|
this->setTypeMask(kUnknown_Mask);
|
||
|
}
|
||
|
|
||
|
/** Sets horizontal scale factor.
|
||
|
|
||
|
@param v horizontal scale factor to store
|
||
|
*/
|
||
|
void setScaleX(float v) {
|
||
|
this->set(kMScaleX, v);
|
||
|
}
|
||
|
|
||
|
/** Sets vertical scale factor.
|
||
|
|
||
|
@param v vertical scale factor to store
|
||
|
*/
|
||
|
void setScaleY(float v) {
|
||
|
this->set(kMScaleY, v);
|
||
|
}
|
||
|
|
||
|
/** Sets vertical skew factor.
|
||
|
|
||
|
@param v vertical skew factor to store
|
||
|
*/
|
||
|
void setSkewY(float v) {
|
||
|
this->set(kMSkewY, v);
|
||
|
}
|
||
|
|
||
|
/** Sets horizontal skew factor.
|
||
|
|
||
|
@param v horizontal skew factor to store
|
||
|
*/
|
||
|
void setSkewX(float v) {
|
||
|
this->set(kMSkewX, v);
|
||
|
}
|
||
|
|
||
|
/** Sets horizontal translation.
|
||
|
|
||
|
@param v horizontal translation to store
|
||
|
*/
|
||
|
void setTranslateX(float v) {
|
||
|
this->set(kMTransX, v);
|
||
|
}
|
||
|
|
||
|
/** Sets vertical translation.
|
||
|
|
||
|
@param v vertical translation to store
|
||
|
*/
|
||
|
void setTranslateY(float v) {
|
||
|
this->set(kMTransY, v);
|
||
|
}
|
||
|
|
||
|
/** Sets input x-axis perspective factor, which causes mapXY() to vary input x-axis values
|
||
|
inversely proportional to input y-axis values.
|
||
|
|
||
|
@param v perspective factor
|
||
|
*/
|
||
|
void setPerspX(float v) {
|
||
|
this->set(kMPersp0, v);
|
||
|
}
|
||
|
|
||
|
/** Sets input y-axis perspective factor, which causes mapXY() to vary input y-axis values
|
||
|
inversely proportional to input x-axis values.
|
||
|
|
||
|
@param v perspective factor
|
||
|
*/
|
||
|
void setPerspY(float v) {
|
||
|
this->set(kMPersp1, v);
|
||
|
}
|
||
|
|
||
|
/** Sets all values from parameters. Sets matrix to:
|
||
|
|
||
|
| scaleX skewX transX |
|
||
|
| skewY scaleY transY |
|
||
|
| persp0 persp1 persp2 |
|
||
|
|
||
|
@param scaleX horizontal scale factor to store
|
||
|
@param skewX horizontal skew factor to store
|
||
|
@param transX horizontal translation to store
|
||
|
@param skewY vertical skew factor to store
|
||
|
@param scaleY vertical scale factor to store
|
||
|
@param transY vertical translation to store
|
||
|
@param persp0 input x-axis values perspective factor to store
|
||
|
@param persp1 input y-axis values perspective factor to store
|
||
|
@param persp2 perspective scale factor to store
|
||
|
*/
|
||
|
void setAll(float scaleX, float skewX, float transX, float skewY, float scaleY, float transY, float persp0,
|
||
|
float persp1, float persp2) {
|
||
|
fMat[kMScaleX] = scaleX;
|
||
|
fMat[kMSkewX] = skewX;
|
||
|
fMat[kMTransX] = transX;
|
||
|
fMat[kMSkewY] = skewY;
|
||
|
fMat[kMScaleY] = scaleY;
|
||
|
fMat[kMTransY] = transY;
|
||
|
fMat[kMPersp0] = persp0;
|
||
|
fMat[kMPersp1] = persp1;
|
||
|
fMat[kMPersp2] = persp2;
|
||
|
this->setTypeMask(kUnknown_Mask);
|
||
|
}
|
||
|
|
||
|
/** Copies nine scalar values contained by Matrix into buffer, in member value
|
||
|
ascending order: kMScaleX, kMSkewX, kMTransX, kMSkewY, kMScaleY, kMTransY,
|
||
|
kMPersp0, kMPersp1, kMPersp2.
|
||
|
|
||
|
@param buffer storage for nine scalar values
|
||
|
*/
|
||
|
void get9(float buffer[9]) const {
|
||
|
memcpy(buffer, fMat, 9 * sizeof(float));
|
||
|
}
|
||
|
|
||
|
/** Sets Matrix to nine scalar values in buffer, in member value ascending order:
|
||
|
kMScaleX, kMSkewX, kMTransX, kMSkewY, kMScaleY, kMTransY, kMPersp0, kMPersp1,
|
||
|
kMPersp2.
|
||
|
|
||
|
Sets matrix to:
|
||
|
|
||
|
| buffer[0] buffer[1] buffer[2] |
|
||
|
| buffer[3] buffer[4] buffer[5] |
|
||
|
| buffer[6] buffer[7] buffer[8] |
|
||
|
|
||
|
In the future, set9 followed by get9 may not return the same values. Since Matrix
|
||
|
maps non-homogeneous coordinates, scaling all nine values produces an equivalent
|
||
|
transformation, possibly improving precision.
|
||
|
|
||
|
@param buffer nine scalar values
|
||
|
*/
|
||
|
void set9(const float buffer[9]);
|
||
|
|
||
|
/** Sets Matrix to identity; which has no effect on mapped Point. Sets Matrix to:
|
||
|
|
||
|
| 1 0 0 |
|
||
|
| 0 1 0 |
|
||
|
| 0 0 1 |
|
||
|
|
||
|
Also called setIdentity(); use the one that provides better inline
|
||
|
documentation.
|
||
|
*/
|
||
|
void reset();
|
||
|
|
||
|
/** Sets Matrix to identity; which has no effect on mapped Point. Sets Matrix to:
|
||
|
|
||
|
| 1 0 0 |
|
||
|
| 0 1 0 |
|
||
|
| 0 0 1 |
|
||
|
|
||
|
Also called reset(); use the one that provides better inline
|
||
|
documentation.
|
||
|
*/
|
||
|
void setIdentity() {
|
||
|
this->reset();
|
||
|
}
|
||
|
|
||
|
/** Sets Matrix to translate by (dx, dy).
|
||
|
|
||
|
@param dx horizontal translation
|
||
|
@param dy vertical translation
|
||
|
*/
|
||
|
void setTranslate(float dx, float dy);
|
||
|
|
||
|
/** Sets Matrix to scale by sx and sy, about a pivot point at (px, py).
|
||
|
The pivot point is unchanged when mapped with Matrix.
|
||
|
|
||
|
@param sx horizontal scale factor
|
||
|
@param sy vertical scale factor
|
||
|
@param px pivot x
|
||
|
@param py pivot y
|
||
|
*/
|
||
|
void setScale(float sx, float sy, float px, float py);
|
||
|
|
||
|
/** Sets Matrix to scale by sx and sy about at pivot point at (0, 0).
|
||
|
|
||
|
@param sx horizontal scale factor
|
||
|
@param sy vertical scale factor
|
||
|
*/
|
||
|
void setScale(float sx, float sy);
|
||
|
|
||
|
/** Sets Matrix to rotate by degrees about a pivot point at (px, py).
|
||
|
The pivot point is unchanged when mapped with Matrix.
|
||
|
|
||
|
Positive degrees rotates clockwise.
|
||
|
|
||
|
@param degrees angle of axes relative to upright axes
|
||
|
@param px pivot x
|
||
|
@param py pivot y
|
||
|
*/
|
||
|
void setRotate(float degrees, float px, float py);
|
||
|
|
||
|
/** Sets Matrix to rotate by degrees about a pivot point at (0, 0).
|
||
|
Positive degrees rotates clockwise.
|
||
|
|
||
|
@param degrees angle of axes relative to upright axes
|
||
|
*/
|
||
|
void setRotate(float degrees);
|
||
|
|
||
|
/** Sets Matrix to rotate by sinValue and cosValue, about a pivot point at (px, py).
|
||
|
The pivot point is unchanged when mapped with Matrix.
|
||
|
|
||
|
Vector (sinValue, cosValue) describes the angle of rotation relative to (0, 1).
|
||
|
Vector length specifies scale.
|
||
|
|
||
|
@param sinValue rotation vector x-axis component
|
||
|
@param cosValue rotation vector y-axis component
|
||
|
@param px pivot x-axis
|
||
|
@param py pivot y-axis
|
||
|
*/
|
||
|
void setSinCos(float sinValue, float cosValue, float px, float py);
|
||
|
|
||
|
/** Sets Matrix to rotate by sinValue and cosValue, about a pivot point at (0, 0).
|
||
|
|
||
|
Vector (sinValue, cosValue) describes the angle of rotation relative to (0, 1).
|
||
|
Vector length specifies scale.
|
||
|
|
||
|
@param sinValue rotation vector x-axis component
|
||
|
@param cosValue rotation vector y-axis component
|
||
|
*/
|
||
|
void setSinCos(float sinValue, float cosValue);
|
||
|
|
||
|
/** Sets Matrix to skew by kx and ky, about a pivot point at (px, py).
|
||
|
The pivot point is unchanged when mapped with Matrix.
|
||
|
|
||
|
@param kx horizontal skew factor
|
||
|
@param ky vertical skew factor
|
||
|
@param px pivot x
|
||
|
@param py pivot y
|
||
|
*/
|
||
|
void setSkew(float kx, float ky, float px, float py);
|
||
|
|
||
|
/** Sets Matrix to skew by kx and ky, about a pivot point at (0, 0).
|
||
|
|
||
|
@param kx horizontal skew factor
|
||
|
@param ky vertical skew factor
|
||
|
*/
|
||
|
void setSkew(float kx, float ky);
|
||
|
|
||
|
/** Sets Matrix to Matrix a multiplied by Matrix b. Either a or b may be this.
|
||
|
|
||
|
Given:
|
||
|
|
||
|
| A B C | | J K L |
|
||
|
a = | D E F |, b = | M N O |
|
||
|
| G H I | | P Q R |
|
||
|
|
||
|
sets Matrix to:
|
||
|
|
||
|
| A B C | | J K L | | AJ+BM+CP AK+BN+CQ AL+BO+CR |
|
||
|
a * b = | D E F | * | M N O | = | DJ+EM+FP DK+EN+FQ DL+EO+FR |
|
||
|
| G H I | | P Q R | | GJ+HM+IP GK+HN+IQ GL+HO+IR |
|
||
|
|
||
|
@param a Matrix on left side of multiply expression
|
||
|
@param b Matrix on right side of multiply expression
|
||
|
*/
|
||
|
void setConcat(const Matrix& a, const Matrix& b);
|
||
|
|
||
|
/** Sets Matrix to Matrix multiplied by Matrix constructed from translation (dx, dy).
|
||
|
This can be thought of as moving the point to be mapped before applying Matrix.
|
||
|
|
||
|
Given:
|
||
|
|
||
|
| A B C | | 1 0 dx |
|
||
|
Matrix = | D E F |, T(dx, dy) = | 0 1 dy |
|
||
|
| G H I | | 0 0 1 |
|
||
|
|
||
|
sets Matrix to:
|
||
|
|
||
|
| A B C | | 1 0 dx | | A B A*dx+B*dy+C |
|
||
|
Matrix * T(dx, dy) = | D E F | | 0 1 dy | = | D E D*dx+E*dy+F |
|
||
|
| G H I | | 0 0 1 | | G H G*dx+H*dy+I |
|
||
|
|
||
|
@param dx x-axis translation before applying Matrix
|
||
|
@param dy y-axis translation before applying Matrix
|
||
|
*/
|
||
|
void preTranslate(float dx, float dy);
|
||
|
|
||
|
/** Sets Matrix to Matrix multiplied by Matrix constructed from scaling by (sx, sy)
|
||
|
about pivot point (px, py).
|
||
|
This can be thought of as scaling about a pivot point before applying Matrix.
|
||
|
|
||
|
Given:
|
||
|
|
||
|
| A B C | | sx 0 dx |
|
||
|
Matrix = | D E F |, S(sx, sy, px, py) = | 0 sy dy |
|
||
|
| G H I | | 0 0 1 |
|
||
|
|
||
|
where
|
||
|
|
||
|
dx = px - sx * px
|
||
|
dy = py - sy * py
|
||
|
|
||
|
sets Matrix to:
|
||
|
|
||
|
| A B C | | sx 0 dx | | A*sx B*sy A*dx+B*dy+C |
|
||
|
Matrix * S(sx, sy, px, py) = | D E F | | 0 sy dy | = | D*sx E*sy D*dx+E*dy+F |
|
||
|
| G H I | | 0 0 1 | | G*sx H*sy G*dx+H*dy+I |
|
||
|
|
||
|
@param sx horizontal scale factor
|
||
|
@param sy vertical scale factor
|
||
|
@param px pivot x
|
||
|
@param py pivot y
|
||
|
*/
|
||
|
void preScale(float sx, float sy, float px, float py);
|
||
|
|
||
|
/** Sets Matrix to Matrix multiplied by Matrix constructed from scaling by (sx, sy)
|
||
|
about pivot point (0, 0).
|
||
|
This can be thought of as scaling about the origin before applying Matrix.
|
||
|
|
||
|
Given:
|
||
|
|
||
|
| A B C | | sx 0 0 |
|
||
|
Matrix = | D E F |, S(sx, sy) = | 0 sy 0 |
|
||
|
| G H I | | 0 0 1 |
|
||
|
|
||
|
sets Matrix to:
|
||
|
|
||
|
| A B C | | sx 0 0 | | A*sx B*sy C |
|
||
|
Matrix * S(sx, sy) = | D E F | | 0 sy 0 | = | D*sx E*sy F |
|
||
|
| G H I | | 0 0 1 | | G*sx H*sy I |
|
||
|
|
||
|
@param sx horizontal scale factor
|
||
|
@param sy vertical scale factor
|
||
|
*/
|
||
|
void preScale(float sx, float sy);
|
||
|
|
||
|
/** Sets Matrix to Matrix multiplied by Matrix constructed from rotating by degrees
|
||
|
about pivot point (px, py).
|
||
|
This can be thought of as rotating about a pivot point before applying Matrix.
|
||
|
|
||
|
Positive degrees rotates clockwise.
|
||
|
|
||
|
Given:
|
||
|
|
||
|
| A B C | | c -s dx |
|
||
|
Matrix = | D E F |, R(degrees, px, py) = | s c dy |
|
||
|
| G H I | | 0 0 1 |
|
||
|
|
||
|
where
|
||
|
|
||
|
c = cos(degrees)
|
||
|
s = sin(degrees)
|
||
|
dx = s * py + (1 - c) * px
|
||
|
dy = -s * px + (1 - c) * py
|
||
|
|
||
|
sets Matrix to:
|
||
|
|
||
|
| A B C | | c -s dx | | Ac+Bs -As+Bc A*dx+B*dy+C |
|
||
|
Matrix * R(degrees, px, py) = | D E F | | s c dy | = | Dc+Es -Ds+Ec D*dx+E*dy+F |
|
||
|
| G H I | | 0 0 1 | | Gc+Hs -Gs+Hc G*dx+H*dy+I |
|
||
|
|
||
|
@param degrees angle of axes relative to upright axes
|
||
|
@param px pivot x
|
||
|
@param py pivot y
|
||
|
*/
|
||
|
void preRotate(float degrees, float px, float py);
|
||
|
|
||
|
/** Sets Matrix to Matrix multiplied by Matrix constructed from rotating by degrees
|
||
|
about pivot point (0, 0).
|
||
|
This can be thought of as rotating about the origin before applying Matrix.
|
||
|
|
||
|
Positive degrees rotates clockwise.
|
||
|
|
||
|
Given:
|
||
|
|
||
|
| A B C | | c -s 0 |
|
||
|
Matrix = | D E F |, R(degrees, px, py) = | s c 0 |
|
||
|
| G H I | | 0 0 1 |
|
||
|
|
||
|
where
|
||
|
|
||
|
c = cos(degrees)
|
||
|
s = sin(degrees)
|
||
|
|
||
|
sets Matrix to:
|
||
|
|
||
|
| A B C | | c -s 0 | | Ac+Bs -As+Bc C |
|
||
|
Matrix * R(degrees, px, py) = | D E F | | s c 0 | = | Dc+Es -Ds+Ec F |
|
||
|
| G H I | | 0 0 1 | | Gc+Hs -Gs+Hc I |
|
||
|
|
||
|
@param degrees angle of axes relative to upright axes
|
||
|
*/
|
||
|
void preRotate(float degrees);
|
||
|
|
||
|
/** Sets Matrix to Matrix multiplied by Matrix constructed from skewing by (kx, ky)
|
||
|
about pivot point (px, py).
|
||
|
This can be thought of as skewing about a pivot point before applying Matrix.
|
||
|
|
||
|
Given:
|
||
|
|
||
|
| A B C | | 1 kx dx |
|
||
|
Matrix = | D E F |, K(kx, ky, px, py) = | ky 1 dy |
|
||
|
| G H I | | 0 0 1 |
|
||
|
|
||
|
where
|
||
|
|
||
|
dx = -kx * py
|
||
|
dy = -ky * px
|
||
|
|
||
|
sets Matrix to:
|
||
|
|
||
|
| A B C | | 1 kx dx | | A+B*ky A*kx+B A*dx+B*dy+C |
|
||
|
Matrix * K(kx, ky, px, py) = | D E F | | ky 1 dy | = | D+E*ky D*kx+E D*dx+E*dy+F |
|
||
|
| G H I | | 0 0 1 | | G+H*ky G*kx+H G*dx+H*dy+I |
|
||
|
|
||
|
@param kx horizontal skew factor
|
||
|
@param ky vertical skew factor
|
||
|
@param px pivot x
|
||
|
@param py pivot y
|
||
|
*/
|
||
|
void preSkew(float kx, float ky, float px, float py);
|
||
|
|
||
|
/** Sets Matrix to Matrix multiplied by Matrix constructed from skewing by (kx, ky)
|
||
|
about pivot point (0, 0).
|
||
|
This can be thought of as skewing about the origin before applying Matrix.
|
||
|
|
||
|
Given:
|
||
|
|
||
|
| A B C | | 1 kx 0 |
|
||
|
Matrix = | D E F |, K(kx, ky) = | ky 1 0 |
|
||
|
| G H I | | 0 0 1 |
|
||
|
|
||
|
sets Matrix to:
|
||
|
|
||
|
| A B C | | 1 kx 0 | | A+B*ky A*kx+B C |
|
||
|
Matrix * K(kx, ky) = | D E F | | ky 1 0 | = | D+E*ky D*kx+E F |
|
||
|
| G H I | | 0 0 1 | | G+H*ky G*kx+H I |
|
||
|
|
||
|
@param kx horizontal skew factor
|
||
|
@param ky vertical skew factor
|
||
|
*/
|
||
|
void preSkew(float kx, float ky);
|
||
|
|
||
|
/** Sets Matrix to Matrix multiplied by Matrix other.
|
||
|
This can be thought of mapping by other before applying Matrix.
|
||
|
|
||
|
Given:
|
||
|
|
||
|
| A B C | | J K L |
|
||
|
Matrix = | D E F |, other = | M N O |
|
||
|
| G H I | | P Q R |
|
||
|
|
||
|
sets Matrix to:
|
||
|
|
||
|
| A B C | | J K L | | AJ+BM+CP AK+BN+CQ AL+BO+CR |
|
||
|
Matrix * other = | D E F | * | M N O | = | DJ+EM+FP DK+EN+FQ DL+EO+FR |
|
||
|
| G H I | | P Q R | | GJ+HM+IP GK+HN+IQ GL+HO+IR |
|
||
|
|
||
|
@param other Matrix on right side of multiply expression
|
||
|
*/
|
||
|
void preConcat(const Matrix& other);
|
||
|
|
||
|
/** Sets Matrix to Matrix constructed from translation (dx, dy) multiplied by Matrix.
|
||
|
This can be thought of as moving the point to be mapped after applying Matrix.
|
||
|
|
||
|
Given:
|
||
|
|
||
|
| J K L | | 1 0 dx |
|
||
|
Matrix = | M N O |, T(dx, dy) = | 0 1 dy |
|
||
|
| P Q R | | 0 0 1 |
|
||
|
|
||
|
sets Matrix to:
|
||
|
|
||
|
| 1 0 dx | | J K L | | J+dx*P K+dx*Q L+dx*R |
|
||
|
T(dx, dy) * Matrix = | 0 1 dy | | M N O | = | M+dy*P N+dy*Q O+dy*R |
|
||
|
| 0 0 1 | | P Q R | | P Q R |
|
||
|
|
||
|
@param dx x-axis translation after applying Matrix
|
||
|
@param dy y-axis translation after applying Matrix
|
||
|
*/
|
||
|
void postTranslate(float dx, float dy);
|
||
|
|
||
|
/** Sets Matrix to Matrix constructed from scaling by (sx, sy) about pivot point
|
||
|
(px, py), multiplied by Matrix.
|
||
|
This can be thought of as scaling about a pivot point after applying Matrix.
|
||
|
|
||
|
Given:
|
||
|
|
||
|
| J K L | | sx 0 dx |
|
||
|
Matrix = | M N O |, S(sx, sy, px, py) = | 0 sy dy |
|
||
|
| P Q R | | 0 0 1 |
|
||
|
|
||
|
where
|
||
|
|
||
|
dx = px - sx * px
|
||
|
dy = py - sy * py
|
||
|
|
||
|
sets Matrix to:
|
||
|
|
||
|
| sx 0 dx | | J K L | | sx*J+dx*P sx*K+dx*Q sx*L+dx+R |
|
||
|
S(sx, sy, px, py) * Matrix = | 0 sy dy | | M N O | = | sy*M+dy*P sy*N+dy*Q sy*O+dy*R |
|
||
|
| 0 0 1 | | P Q R | | P Q R |
|
||
|
|
||
|
@param sx horizontal scale factor
|
||
|
@param sy vertical scale factor
|
||
|
@param px pivot x
|
||
|
@param py pivot y
|
||
|
*/
|
||
|
void postScale(float sx, float sy, float px, float py);
|
||
|
|
||
|
/** Sets Matrix to Matrix constructed from scaling by (sx, sy) about pivot point
|
||
|
(0, 0), multiplied by Matrix.
|
||
|
This can be thought of as scaling about the origin after applying Matrix.
|
||
|
|
||
|
Given:
|
||
|
|
||
|
| J K L | | sx 0 0 |
|
||
|
Matrix = | M N O |, S(sx, sy) = | 0 sy 0 |
|
||
|
| P Q R | | 0 0 1 |
|
||
|
|
||
|
sets Matrix to:
|
||
|
|
||
|
| sx 0 0 | | J K L | | sx*J sx*K sx*L |
|
||
|
S(sx, sy) * Matrix = | 0 sy 0 | | M N O | = | sy*M sy*N sy*O |
|
||
|
| 0 0 1 | | P Q R | | P Q R |
|
||
|
|
||
|
@param sx horizontal scale factor
|
||
|
@param sy vertical scale factor
|
||
|
*/
|
||
|
void postScale(float sx, float sy);
|
||
|
|
||
|
/** Sets Matrix to Matrix constructed from scaling by (1/divx, 1/divy) about pivot point (px, py), multiplied by
|
||
|
Matrix.
|
||
|
|
||
|
Returns false if either divx or divy is zero.
|
||
|
|
||
|
Given:
|
||
|
|
||
|
| J K L | | sx 0 0 |
|
||
|
Matrix = | M N O |, I(divx, divy) = | 0 sy 0 |
|
||
|
| P Q R | | 0 0 1 |
|
||
|
|
||
|
where
|
||
|
|
||
|
sx = 1 / divx
|
||
|
sy = 1 / divy
|
||
|
|
||
|
sets Matrix to:
|
||
|
|
||
|
| sx 0 0 | | J K L | | sx*J sx*K sx*L |
|
||
|
I(divx, divy) * Matrix = | 0 sy 0 | | M N O | = | sy*M sy*N sy*O |
|
||
|
| 0 0 1 | | P Q R | | P Q R |
|
||
|
|
||
|
@param divx integer divisor for inverse scale in x
|
||
|
@param divy integer divisor for inverse scale in y
|
||
|
@return true on successful scale
|
||
|
*/
|
||
|
bool postIDiv(int divx, int divy);
|
||
|
|
||
|
/** Sets Matrix to Matrix constructed from rotating by degrees about pivot point
|
||
|
(px, py), multiplied by Matrix.
|
||
|
This can be thought of as rotating about a pivot point after applying Matrix.
|
||
|
|
||
|
Positive degrees rotates clockwise.
|
||
|
|
||
|
Given:
|
||
|
|
||
|
| J K L | | c -s dx |
|
||
|
Matrix = | M N O |, R(degrees, px, py) = | s c dy |
|
||
|
| P Q R | | 0 0 1 |
|
||
|
|
||
|
where
|
||
|
|
||
|
c = cos(degrees)
|
||
|
s = sin(degrees)
|
||
|
dx = s * py + (1 - c) * px
|
||
|
dy = -s * px + (1 - c) * py
|
||
|
|
||
|
sets Matrix to:
|
||
|
|
||
|
|c -s dx| |J K L| |cJ-sM+dx*P cK-sN+dx*Q cL-sO+dx+R|
|
||
|
R(degrees, px, py) * Matrix = |s c dy| |M N O| = |sJ+cM+dy*P sK+cN+dy*Q sL+cO+dy*R|
|
||
|
|0 0 1| |P Q R| | P Q R|
|
||
|
|
||
|
@param degrees angle of axes relative to upright axes
|
||
|
@param px pivot x
|
||
|
@param py pivot y
|
||
|
*/
|
||
|
void postRotate(float degrees, float px, float py);
|
||
|
|
||
|
/** Sets Matrix to Matrix constructed from rotating by degrees about pivot point
|
||
|
(0, 0), multiplied by Matrix.
|
||
|
This can be thought of as rotating about the origin after applying Matrix.
|
||
|
|
||
|
Positive degrees rotates clockwise.
|
||
|
|
||
|
Given:
|
||
|
|
||
|
| J K L | | c -s 0 |
|
||
|
Matrix = | M N O |, R(degrees, px, py) = | s c 0 |
|
||
|
| P Q R | | 0 0 1 |
|
||
|
|
||
|
where
|
||
|
|
||
|
c = cos(degrees)
|
||
|
s = sin(degrees)
|
||
|
|
||
|
sets Matrix to:
|
||
|
|
||
|
| c -s dx | | J K L | | cJ-sM cK-sN cL-sO |
|
||
|
R(degrees, px, py) * Matrix = | s c dy | | M N O | = | sJ+cM sK+cN sL+cO |
|
||
|
| 0 0 1 | | P Q R | | P Q R |
|
||
|
|
||
|
@param degrees angle of axes relative to upright axes
|
||
|
*/
|
||
|
void postRotate(float degrees);
|
||
|
|
||
|
/** Sets Matrix to Matrix constructed from skewing by (kx, ky) about pivot point
|
||
|
(px, py), multiplied by Matrix.
|
||
|
This can be thought of as skewing about a pivot point after applying Matrix.
|
||
|
|
||
|
Given:
|
||
|
|
||
|
| J K L | | 1 kx dx |
|
||
|
Matrix = | M N O |, K(kx, ky, px, py) = | ky 1 dy |
|
||
|
| P Q R | | 0 0 1 |
|
||
|
|
||
|
where
|
||
|
|
||
|
dx = -kx * py
|
||
|
dy = -ky * px
|
||
|
|
||
|
sets Matrix to:
|
||
|
|
||
|
| 1 kx dx| |J K L| |J+kx*M+dx*P K+kx*N+dx*Q L+kx*O+dx+R|
|
||
|
K(kx, ky, px, py) * Matrix = |ky 1 dy| |M N O| = |ky*J+M+dy*P ky*K+N+dy*Q ky*L+O+dy*R|
|
||
|
| 0 0 1| |P Q R| | P Q R|
|
||
|
|
||
|
@param kx horizontal skew factor
|
||
|
@param ky vertical skew factor
|
||
|
@param px pivot x
|
||
|
@param py pivot y
|
||
|
*/
|
||
|
void postSkew(float kx, float ky, float px, float py);
|
||
|
|
||
|
/** Sets Matrix to Matrix constructed from skewing by (kx, ky) about pivot point
|
||
|
(0, 0), multiplied by Matrix.
|
||
|
This can be thought of as skewing about the origin after applying Matrix.
|
||
|
|
||
|
Given:
|
||
|
|
||
|
| J K L | | 1 kx 0 |
|
||
|
Matrix = | M N O |, K(kx, ky) = | ky 1 0 |
|
||
|
| P Q R | | 0 0 1 |
|
||
|
|
||
|
sets Matrix to:
|
||
|
|
||
|
| 1 kx 0 | | J K L | | J+kx*M K+kx*N L+kx*O |
|
||
|
K(kx, ky) * Matrix = | ky 1 0 | | M N O | = | ky*J+M ky*K+N ky*L+O |
|
||
|
| 0 0 1 | | P Q R | | P Q R |
|
||
|
|
||
|
@param kx horizontal skew factor
|
||
|
@param ky vertical skew factor
|
||
|
*/
|
||
|
void postSkew(float kx, float ky);
|
||
|
|
||
|
/** Sets Matrix to Matrix other multiplied by Matrix.
|
||
|
This can be thought of mapping by other after applying Matrix.
|
||
|
|
||
|
Given:
|
||
|
|
||
|
| J K L | | A B C |
|
||
|
Matrix = | M N O |, other = | D E F |
|
||
|
| P Q R | | G H I |
|
||
|
|
||
|
sets Matrix to:
|
||
|
|
||
|
| A B C | | J K L | | AJ+BM+CP AK+BN+CQ AL+BO+CR |
|
||
|
other * Matrix = | D E F | * | M N O | = | DJ+EM+FP DK+EN+FQ DL+EO+FR |
|
||
|
| G H I | | P Q R | | GJ+HM+IP GK+HN+IQ GL+HO+IR |
|
||
|
|
||
|
@param other Matrix on left side of multiply expression
|
||
|
*/
|
||
|
void postConcat(const Matrix& other);
|
||
|
|
||
|
/** \enum Matrix::ScaleToFit
|
||
|
ScaleToFit describes how Matrix is constructed to map one Rect to another.
|
||
|
ScaleToFit may allow Matrix to have unequal horizontal and vertical scaling,
|
||
|
or may restrict Matrix to square scaling. If restricted, ScaleToFit specifies
|
||
|
how Matrix maps to the side or center of the destination Rect.
|
||
|
*/
|
||
|
enum ScaleToFit {
|
||
|
kFill_ScaleToFit, //!< scales in x and y to fill destination Rect
|
||
|
kStart_ScaleToFit, //!< scales and aligns to left and top
|
||
|
kCenter_ScaleToFit, //!< scales and aligns to center
|
||
|
kEnd_ScaleToFit, //!< scales and aligns to right and bottom
|
||
|
};
|
||
|
|
||
|
/** Sets Matrix to scale and translate src Rect to dst Rect. stf selects whether
|
||
|
mapping completely fills dst or preserves the aspect ratio, and how to align
|
||
|
src within dst. Returns false if src is empty, and sets Matrix to identity.
|
||
|
Returns true if dst is empty, and sets Matrix to:
|
||
|
|
||
|
| 0 0 0 |
|
||
|
| 0 0 0 |
|
||
|
| 0 0 1 |
|
||
|
|
||
|
@param src Rect to map from
|
||
|
@param dst Rect to map to
|
||
|
@param stf one of: kFill_ScaleToFit, kStart_ScaleToFit,
|
||
|
kCenter_ScaleToFit, kEnd_ScaleToFit
|
||
|
@return true if Matrix can represent Rect mapping
|
||
|
*/
|
||
|
bool setRectToRect(const Rect& src, const Rect& dst, ScaleToFit stf);
|
||
|
|
||
|
/** Returns Matrix set to scale and translate src Rect to dst Rect. stf selects
|
||
|
whether mapping completely fills dst or preserves the aspect ratio, and how to
|
||
|
align src within dst. Returns the identity Matrix if src is empty. If dst is
|
||
|
empty, returns Matrix set to:
|
||
|
|
||
|
| 0 0 0 |
|
||
|
| 0 0 0 |
|
||
|
| 0 0 1 |
|
||
|
|
||
|
@param src Rect to map from
|
||
|
@param dst Rect to map to
|
||
|
@param stf one of: kFill_ScaleToFit, kStart_ScaleToFit,
|
||
|
kCenter_ScaleToFit, kEnd_ScaleToFit
|
||
|
@return Matrix mapping src to dst
|
||
|
*/
|
||
|
static Matrix MakeRectToRect(const Rect& src, const Rect& dst, ScaleToFit stf) {
|
||
|
Matrix m;
|
||
|
m.setRectToRect(src, dst, stf);
|
||
|
return m;
|
||
|
}
|
||
|
|
||
|
/** Sets Matrix to map src to dst. count must be zero or greater, and four or less.
|
||
|
|
||
|
If count is zero, sets Matrix to identity and returns true.
|
||
|
If count is one, sets Matrix to translate and returns true.
|
||
|
If count is two or more, sets Matrix to map Point if possible; returns false
|
||
|
if Matrix cannot be constructed. If count is four, Matrix may include
|
||
|
perspective.
|
||
|
|
||
|
@param src Point to map from
|
||
|
@param dst Point to map to
|
||
|
@param count number of Point in src and dst
|
||
|
@return true if Matrix was constructed successfully
|
||
|
*/
|
||
|
bool setPolyToPoly(const Point src[], const Point dst[], int count);
|
||
|
|
||
|
/** Sets inverse to reciprocal matrix, returning true if Matrix can be inverted.
|
||
|
Geometrically, if Matrix maps from source to destination, inverse Matrix
|
||
|
maps from destination to source. If Matrix can not be inverted, inverse is
|
||
|
unchanged.
|
||
|
|
||
|
@param inverse storage for inverted Matrix; may be nullptr
|
||
|
@return true if Matrix can be inverted
|
||
|
*/
|
||
|
bool invert(Matrix* inverse) const {
|
||
|
// Allow the trivial case to be inlined.
|
||
|
if (this->isIdentity()) {
|
||
|
if (inverse) {
|
||
|
inverse->reset();
|
||
|
}
|
||
|
return true;
|
||
|
}
|
||
|
return this->invertNonIdentity(inverse);
|
||
|
}
|
||
|
|
||
|
/** Fills affine with identity values in column major order.
|
||
|
Sets affine to:
|
||
|
|
||
|
| 1 0 0 |
|
||
|
| 0 1 0 |
|
||
|
|
||
|
Affine 3x2 matrices in column major order are used by OpenGL and XPS.
|
||
|
|
||
|
@param affine storage for 3x2 affine matrix
|
||
|
*/
|
||
|
static void SetAffineIdentity(float affine[6]);
|
||
|
|
||
|
/** Fills affine in column major order. Sets affine to:
|
||
|
|
||
|
| scale-x skew-x translate-x |
|
||
|
| skew-y scale-y translate-y |
|
||
|
|
||
|
If Matrix contains perspective, returns false and leaves affine unchanged.
|
||
|
|
||
|
@param affine storage for 3x2 affine matrix; may be nullptr
|
||
|
@return true if Matrix does not contain perspective
|
||
|
*/
|
||
|
bool asAffine(float affine[6]) const;
|
||
|
|
||
|
/** Sets Matrix to affine values, passed in column major order. Given affine,
|
||
|
column, then row, as:
|
||
|
|
||
|
| scale-x skew-x translate-x |
|
||
|
| skew-y scale-y translate-y |
|
||
|
|
||
|
Matrix is set, row, then column, to:
|
||
|
|
||
|
| scale-x skew-x translate-x |
|
||
|
| skew-y scale-y translate-y |
|
||
|
| 0 0 1 |
|
||
|
|
||
|
@param affine 3x2 affine matrix
|
||
|
*/
|
||
|
void setAffine(const float affine[6]);
|
||
|
|
||
|
/** Maps src Point array of length count to dst Point array of equal or greater
|
||
|
length. Point are mapped by multiplying each Point by Matrix. Given:
|
||
|
|
||
|
| A B C | | x |
|
||
|
Matrix = | D E F |, pt = | y |
|
||
|
| G H I | | 1 |
|
||
|
|
||
|
where
|
||
|
|
||
|
for (i = 0; i < count; ++i) {
|
||
|
x = src[i].fX
|
||
|
y = src[i].fY
|
||
|
}
|
||
|
|
||
|
each dst Point is computed as:
|
||
|
|
||
|
|A B C| |x| Ax+By+C Dx+Ey+F
|
||
|
Matrix * pt = |D E F| |y| = |Ax+By+C Dx+Ey+F Gx+Hy+I| = ------- , -------
|
||
|
|G H I| |1| Gx+Hy+I Gx+Hy+I
|
||
|
|
||
|
src and dst may point to the same storage.
|
||
|
|
||
|
@param dst storage for mapped Point
|
||
|
@param src Point to transform
|
||
|
@param count number of Point to transform
|
||
|
*/
|
||
|
void mapPoints(Point dst[], const Point src[], int count) const {
|
||
|
MNN_ASSERT((dst && src && count > 0) || 0 == count);
|
||
|
// no partial overlap
|
||
|
MNN_ASSERT(src == dst || &dst[count] <= &src[0] || &src[count] <= &dst[0]);
|
||
|
this->getMapPtsProc()(*this, dst, src, count);
|
||
|
}
|
||
|
|
||
|
/** Maps pts Point array of length count in place. Point are mapped by multiplying
|
||
|
each Point by Matrix. Given:
|
||
|
|
||
|
| A B C | | x |
|
||
|
Matrix = | D E F |, pt = | y |
|
||
|
| G H I | | 1 |
|
||
|
|
||
|
where
|
||
|
|
||
|
for (i = 0; i < count; ++i) {
|
||
|
x = pts[i].fX
|
||
|
y = pts[i].fY
|
||
|
}
|
||
|
|
||
|
each resulting pts Point is computed as:
|
||
|
|
||
|
|A B C| |x| Ax+By+C Dx+Ey+F
|
||
|
Matrix * pt = |D E F| |y| = |Ax+By+C Dx+Ey+F Gx+Hy+I| = ------- , -------
|
||
|
|G H I| |1| Gx+Hy+I Gx+Hy+I
|
||
|
|
||
|
@param pts storage for mapped Point
|
||
|
@param count number of Point to transform
|
||
|
*/
|
||
|
void mapPoints(Point pts[], int count) const {
|
||
|
this->mapPoints(pts, pts, count);
|
||
|
}
|
||
|
|
||
|
/** Maps Point (x, y) to result. Point is mapped by multiplying by Matrix. Given:
|
||
|
|
||
|
| A B C | | x |
|
||
|
Matrix = | D E F |, pt = | y |
|
||
|
| G H I | | 1 |
|
||
|
|
||
|
result is computed as:
|
||
|
|
||
|
|A B C| |x| Ax+By+C Dx+Ey+F
|
||
|
Matrix * pt = |D E F| |y| = |Ax+By+C Dx+Ey+F Gx+Hy+I| = ------- , -------
|
||
|
|G H I| |1| Gx+Hy+I Gx+Hy+I
|
||
|
|
||
|
@param x x-axis value of Point to map
|
||
|
@param y y-axis value of Point to map
|
||
|
@param result storage for mapped Point
|
||
|
*/
|
||
|
void mapXY(float x, float y, Point* result) const {
|
||
|
this->getMapXYProc()(*this, x, y, result);
|
||
|
}
|
||
|
|
||
|
/** Returns Point (x, y) multiplied by Matrix. Given:
|
||
|
|
||
|
| A B C | | x |
|
||
|
Matrix = | D E F |, pt = | y |
|
||
|
| G H I | | 1 |
|
||
|
|
||
|
result is computed as:
|
||
|
|
||
|
|A B C| |x| Ax+By+C Dx+Ey+F
|
||
|
Matrix * pt = |D E F| |y| = |Ax+By+C Dx+Ey+F Gx+Hy+I| = ------- , -------
|
||
|
|G H I| |1| Gx+Hy+I Gx+Hy+I
|
||
|
|
||
|
@param x x-axis value of Point to map
|
||
|
@param y y-axis value of Point to map
|
||
|
@return mapped Point
|
||
|
*/
|
||
|
Point mapXY(float x, float y) const {
|
||
|
Point result;
|
||
|
this->getMapXYProc()(*this, x, y, &result);
|
||
|
return result;
|
||
|
}
|
||
|
|
||
|
/** Sets dst to bounds of src corners mapped by Matrix.
|
||
|
Returns true if mapped corners are dst corners.
|
||
|
|
||
|
Returned value is the same as calling rectStaysRect().
|
||
|
|
||
|
@param dst storage for bounds of mapped Point
|
||
|
@param src Rect to map
|
||
|
@return true if dst is equivalent to mapped src
|
||
|
*/
|
||
|
bool mapRect(Rect* dst, const Rect& src) const;
|
||
|
|
||
|
/** Sets rect to bounds of rect corners mapped by Matrix.
|
||
|
Returns true if mapped corners are computed rect corners.
|
||
|
|
||
|
Returned value is the same as calling rectStaysRect().
|
||
|
|
||
|
@param rect rectangle to map, and storage for bounds of mapped corners
|
||
|
@return true if result is equivalent to mapped src
|
||
|
*/
|
||
|
bool mapRect(Rect* rect) const {
|
||
|
return this->mapRect(rect, *rect);
|
||
|
}
|
||
|
|
||
|
/** Returns bounds of src corners mapped by Matrix.
|
||
|
|
||
|
@param src rectangle to map
|
||
|
@return mapped bounds
|
||
|
*/
|
||
|
Rect mapRect(const Rect& src) const {
|
||
|
Rect dst;
|
||
|
(void)this->mapRect(&dst, src);
|
||
|
return dst;
|
||
|
}
|
||
|
|
||
|
/** Sets dst to bounds of src corners mapped by Matrix. If matrix contains
|
||
|
elements other than scale or translate: asserts if SK_DEBUG is defined;
|
||
|
otherwise, results are undefined.
|
||
|
|
||
|
@param dst storage for bounds of mapped Point
|
||
|
@param src Rect to map
|
||
|
*/
|
||
|
void mapRectScaleTranslate(Rect* dst, const Rect& src) const;
|
||
|
|
||
|
/** Returns true if Matrix equals m, using an efficient comparison.
|
||
|
|
||
|
Returns false when the sign of zero values is the different; when one
|
||
|
matrix has positive zero value and the other has negative zero value.
|
||
|
|
||
|
Returns true even when both Matrix contain NaN.
|
||
|
|
||
|
NaN never equals any value, including itself. To improve performance, NaN values
|
||
|
are treated as bit patterns that are equal if their bit patterns are equal.
|
||
|
|
||
|
@param m Matrix to compare
|
||
|
@return true if m and Matrix are represented by identical bit patterns
|
||
|
*/
|
||
|
bool cheapEqualTo(const Matrix& m) const {
|
||
|
return 0 == memcmp(fMat, m.fMat, sizeof(fMat));
|
||
|
}
|
||
|
|
||
|
/** Compares a and b; returns true if a and b are numerically equal. Returns true
|
||
|
even if sign of zero values are different. Returns false if either Matrix
|
||
|
contains NaN, even if the other Matrix also contains NaN.
|
||
|
|
||
|
@param a Matrix to compare
|
||
|
@param b Matrix to compare
|
||
|
@return true if Matrix a and Matrix b are numerically equal
|
||
|
*/
|
||
|
friend MNN_PUBLIC bool operator==(const Matrix& a, const Matrix& b);
|
||
|
|
||
|
/** Compares a and b; returns true if a and b are not numerically equal. Returns false
|
||
|
even if sign of zero values are different. Returns true if either Matrix
|
||
|
contains NaN, even if the other Matrix also contains NaN.
|
||
|
|
||
|
@param a Matrix to compare
|
||
|
@param b Matrix to compare
|
||
|
@return true if Matrix a and Matrix b are numerically not equal
|
||
|
*/
|
||
|
friend MNN_PUBLIC bool operator!=(const Matrix& a, const Matrix& b) {
|
||
|
return !(a == b);
|
||
|
}
|
||
|
|
||
|
/** Writes text representation of Matrix to standard output. Floating point values
|
||
|
are written with limited precision; it may not be possible to reconstruct
|
||
|
original Matrix from output.
|
||
|
*/
|
||
|
void dump() const;
|
||
|
|
||
|
/** Returns the minimum scaling factor of Matrix by decomposing the scaling and
|
||
|
skewing elements.
|
||
|
Returns -1 if scale factor overflows or Matrix contains perspective.
|
||
|
|
||
|
@return minimum scale factor
|
||
|
*/
|
||
|
float getMinScale() const;
|
||
|
|
||
|
/** Returns the maximum scaling factor of Matrix by decomposing the scaling and
|
||
|
skewing elements.
|
||
|
Returns -1 if scale factor overflows or Matrix contains perspective.
|
||
|
|
||
|
@return maximum scale factor
|
||
|
*/
|
||
|
float getMaxScale() const;
|
||
|
|
||
|
/** Sets scaleFactors[0] to the minimum scaling factor, and scaleFactors[1] to the
|
||
|
maximum scaling factor. Scaling factors are computed by decomposing
|
||
|
the Matrix scaling and skewing elements.
|
||
|
|
||
|
Returns true if scaleFactors are found; otherwise, returns false and sets
|
||
|
scaleFactors to undefined values.
|
||
|
|
||
|
@param scaleFactors storage for minimum and maximum scale factors
|
||
|
@return true if scale factors were computed correctly
|
||
|
*/
|
||
|
bool getMinMaxScales(float scaleFactors[2]) const;
|
||
|
|
||
|
/** Returns reference to const identity Matrix. Returned Matrix is set to:
|
||
|
|
||
|
| 1 0 0 |
|
||
|
| 0 1 0 |
|
||
|
| 0 0 1 |
|
||
|
|
||
|
@return const identity Matrix
|
||
|
*/
|
||
|
static const Matrix& I();
|
||
|
|
||
|
/** Returns reference to a const Matrix with invalid values. Returned Matrix is set
|
||
|
to:
|
||
|
|
||
|
| SK_ScalarMax SK_ScalarMax SK_ScalarMax |
|
||
|
| SK_ScalarMax SK_ScalarMax SK_ScalarMax |
|
||
|
| SK_ScalarMax SK_ScalarMax SK_ScalarMax |
|
||
|
|
||
|
@return const invalid Matrix
|
||
|
*/
|
||
|
static const Matrix& InvalidMatrix();
|
||
|
|
||
|
/** Returns Matrix a multiplied by Matrix b.
|
||
|
|
||
|
Given:
|
||
|
|
||
|
| A B C | | J K L |
|
||
|
a = | D E F |, b = | M N O |
|
||
|
| G H I | | P Q R |
|
||
|
|
||
|
sets Matrix to:
|
||
|
|
||
|
| A B C | | J K L | | AJ+BM+CP AK+BN+CQ AL+BO+CR |
|
||
|
a * b = | D E F | * | M N O | = | DJ+EM+FP DK+EN+FQ DL+EO+FR |
|
||
|
| G H I | | P Q R | | GJ+HM+IP GK+HN+IQ GL+HO+IR |
|
||
|
|
||
|
@param a Matrix on left side of multiply expression
|
||
|
@param b Matrix on right side of multiply expression
|
||
|
@return Matrix computed from a times b
|
||
|
*/
|
||
|
static Matrix Concat(const Matrix& a, const Matrix& b) {
|
||
|
Matrix result;
|
||
|
result.setConcat(a, b);
|
||
|
return result;
|
||
|
}
|
||
|
|
||
|
/** Sets internal cache to unknown state. Use to force update after repeated
|
||
|
modifications to Matrix element reference returned by operator[](int index).
|
||
|
*/
|
||
|
void dirtyMatrixTypeCache() {
|
||
|
this->setTypeMask(kUnknown_Mask);
|
||
|
}
|
||
|
|
||
|
/** Initializes Matrix with scale and translate elements.
|
||
|
|
||
|
| sx 0 tx |
|
||
|
| 0 sy ty |
|
||
|
| 0 0 1 |
|
||
|
|
||
|
@param sx horizontal scale factor to store
|
||
|
@param sy vertical scale factor to store
|
||
|
@param tx horizontal translation to store
|
||
|
@param ty vertical translation to store
|
||
|
*/
|
||
|
void setScaleTranslate(float sx, float sy, float tx, float ty) {
|
||
|
fMat[kMScaleX] = sx;
|
||
|
fMat[kMSkewX] = 0;
|
||
|
fMat[kMTransX] = tx;
|
||
|
|
||
|
fMat[kMSkewY] = 0;
|
||
|
fMat[kMScaleY] = sy;
|
||
|
fMat[kMTransY] = ty;
|
||
|
|
||
|
fMat[kMPersp0] = 0;
|
||
|
fMat[kMPersp1] = 0;
|
||
|
fMat[kMPersp2] = 1;
|
||
|
|
||
|
unsigned mask = 0;
|
||
|
if (sx != 1 || sy != 1) {
|
||
|
mask |= kScale_Mask;
|
||
|
}
|
||
|
if (tx || ty) {
|
||
|
mask |= kTranslate_Mask;
|
||
|
}
|
||
|
this->setTypeMask(mask | kRectStaysRect_Mask);
|
||
|
}
|
||
|
|
||
|
/** Returns true if all elements of the matrix are finite. Returns false if any
|
||
|
element is infinity, or NaN.
|
||
|
|
||
|
@return true if matrix has only finite elements
|
||
|
*/
|
||
|
|
||
|
private:
|
||
|
/** Set if the matrix will map a rectangle to another rectangle. This
|
||
|
can be true if the matrix is scale-only, or rotates a multiple of
|
||
|
90 degrees.
|
||
|
|
||
|
This bit will be set on identity matrices
|
||
|
*/
|
||
|
static constexpr int kRectStaysRect_Mask = 0x10;
|
||
|
|
||
|
/** Set if the perspective bit is valid even though the rest of
|
||
|
the matrix is Unknown.
|
||
|
*/
|
||
|
static constexpr int kOnlyPerspectiveValid_Mask = 0x40;
|
||
|
|
||
|
static constexpr int kUnknown_Mask = 0x80;
|
||
|
|
||
|
static constexpr int kORableMasks = kTranslate_Mask | kScale_Mask | kAffine_Mask | kPerspective_Mask;
|
||
|
|
||
|
static constexpr int kAllMasks =
|
||
|
kTranslate_Mask | kScale_Mask | kAffine_Mask | kPerspective_Mask | kRectStaysRect_Mask;
|
||
|
|
||
|
float fMat[9];
|
||
|
mutable uint32_t fTypeMask;
|
||
|
|
||
|
static void ComputeInv(float dst[9], const float src[9], double invDet, bool isPersp);
|
||
|
|
||
|
uint8_t computeTypeMask() const;
|
||
|
uint8_t computePerspectiveTypeMask() const;
|
||
|
|
||
|
void setTypeMask(int mask) {
|
||
|
// allow kUnknown or a valid mask
|
||
|
MNN_ASSERT(kUnknown_Mask == mask || (mask & kAllMasks) == mask ||
|
||
|
((kUnknown_Mask | kOnlyPerspectiveValid_Mask) & mask) ==
|
||
|
(kUnknown_Mask | kOnlyPerspectiveValid_Mask));
|
||
|
fTypeMask = (uint8_t)(mask);
|
||
|
}
|
||
|
|
||
|
void orTypeMask(int mask) {
|
||
|
MNN_ASSERT((mask & kORableMasks) == mask);
|
||
|
fTypeMask = (uint8_t)(fTypeMask | mask);
|
||
|
}
|
||
|
|
||
|
void clearTypeMask(int mask) {
|
||
|
// only allow a valid mask
|
||
|
MNN_ASSERT((mask & kAllMasks) == mask);
|
||
|
fTypeMask = fTypeMask & ~mask;
|
||
|
}
|
||
|
|
||
|
TypeMask getPerspectiveTypeMaskOnly() const {
|
||
|
if ((fTypeMask & kUnknown_Mask) && !(fTypeMask & kOnlyPerspectiveValid_Mask)) {
|
||
|
fTypeMask = this->computePerspectiveTypeMask();
|
||
|
}
|
||
|
return (TypeMask)(fTypeMask & 0xF);
|
||
|
}
|
||
|
|
||
|
/** Returns true if we already know that the matrix is identity;
|
||
|
false otherwise.
|
||
|
*/
|
||
|
bool isTriviallyIdentity() const {
|
||
|
if (fTypeMask & kUnknown_Mask) {
|
||
|
return false;
|
||
|
}
|
||
|
return ((fTypeMask & 0xF) == 0);
|
||
|
}
|
||
|
|
||
|
inline void updateTranslateMask() {
|
||
|
if ((fMat[kMTransX] != 0) | (fMat[kMTransY] != 0)) {
|
||
|
fTypeMask |= kTranslate_Mask;
|
||
|
} else {
|
||
|
fTypeMask &= ~kTranslate_Mask;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
typedef void (*MapXYProc)(const Matrix& mat, float x, float y, Point* result);
|
||
|
|
||
|
static MapXYProc GetMapXYProc(TypeMask mask) {
|
||
|
MNN_ASSERT((mask & ~kAllMasks) == 0);
|
||
|
return gMapXYProcs[mask & kAllMasks];
|
||
|
}
|
||
|
|
||
|
MapXYProc getMapXYProc() const {
|
||
|
return GetMapXYProc(this->getType());
|
||
|
}
|
||
|
|
||
|
typedef void (*MapPtsProc)(const Matrix& mat, Point dst[], const Point src[], int count);
|
||
|
|
||
|
static MapPtsProc GetMapPtsProc(TypeMask mask) {
|
||
|
MNN_ASSERT((mask & ~kAllMasks) == 0);
|
||
|
return gMapPtsProcs[mask & kAllMasks];
|
||
|
}
|
||
|
|
||
|
MapPtsProc getMapPtsProc() const {
|
||
|
return GetMapPtsProc(this->getType());
|
||
|
}
|
||
|
|
||
|
bool invertNonIdentity(Matrix* inverse) const;
|
||
|
|
||
|
static void Identity_xy(const Matrix&, float, float, Point*);
|
||
|
static void Trans_xy(const Matrix&, float, float, Point*);
|
||
|
static void Scale_xy(const Matrix&, float, float, Point*);
|
||
|
static void ScaleTrans_xy(const Matrix&, float, float, Point*);
|
||
|
static void Rot_xy(const Matrix&, float, float, Point*);
|
||
|
static void RotTrans_xy(const Matrix&, float, float, Point*);
|
||
|
static void Persp_xy(const Matrix&, float, float, Point*);
|
||
|
|
||
|
static const MapXYProc gMapXYProcs[];
|
||
|
|
||
|
static void Identity_pts(const Matrix&, Point[], const Point[], int);
|
||
|
static void Trans_pts(const Matrix&, Point dst[], const Point[], int);
|
||
|
static void Scale_pts(const Matrix&, Point dst[], const Point[], int);
|
||
|
static void ScaleTrans_pts(const Matrix&, Point dst[], const Point[], int count);
|
||
|
static void Persp_pts(const Matrix&, Point dst[], const Point[], int);
|
||
|
|
||
|
static void Affine_vpts(const Matrix&, Point dst[], const Point[], int);
|
||
|
|
||
|
static const MapPtsProc gMapPtsProcs[];
|
||
|
static bool Poly2Proc(const Point srcPt[], Matrix* dst);
|
||
|
static bool Poly3Proc(const Point srcPt[], Matrix* dst);
|
||
|
static bool Poly4Proc(const Point srcPt[], Matrix* dst);
|
||
|
};
|
||
|
} // namespace CV
|
||
|
} // namespace MNN
|
||
|
#endif
|