MNN/source/core/Session.cpp

214 lines
5.7 KiB
C++
Raw Normal View History

2019-04-17 10:49:11 +08:00
//
// Session.cpp
// MNN
//
// Created by MNN on 2018/07/30.
// Copyright © 2018, Alibaba Group Holding Limited
//
2019-12-27 22:16:57 +08:00
#include "core/Session.hpp"
2019-04-17 10:49:11 +08:00
#include <string.h>
#include <map>
#include <set>
2019-12-27 22:16:57 +08:00
#include "core/AutoStorage.h"
#include <MNN/AutoTime.hpp>
#include "core/BackendFactory.hpp"
2019-04-17 10:49:11 +08:00
#include "MNN_generated.h"
2019-12-27 22:16:57 +08:00
#include "core/TensorUtils.hpp"
#include "core/WrapExecution.hpp"
2019-04-17 10:49:11 +08:00
using namespace std;
namespace MNN {
Backend* Session::_getDefaultBackend() {
auto defaultType = MNN_FORWARD_CPU;
if (mBackends.find(defaultType) == mBackends.end()) {
Backend::Info info;
2019-08-08 14:42:14 +08:00
info.type = defaultType;
info.numThread = 1;
2019-04-17 10:49:11 +08:00
mBackends[info.type].reset(BackendFactory::create(info));
}
auto cpuBackend = mBackends.find(defaultType)->second.get();
return cpuBackend;
}
Session::Session(const Schedule::ScheduleInfo& info) {
if (info.pipelineInfo.empty()) {
mValid = false;
return;
}
mTensors = info.allTensors;
for (auto& iter : info.pipelineInfo) {
if (mBackends.find(iter.first.type) == mBackends.end()) {
auto newBn = BackendFactory::create(iter.first);
if (nullptr == newBn) {
mValid = false;
return;
}
mBackends[iter.first.type].reset(newBn);
}
auto backend = mBackends.find(iter.first.type)->second.get();
auto cpuBackend = _getDefaultBackend();
std::shared_ptr<Pipeline> newPipeline(new Pipeline(iter.second, backend, cpuBackend));
2019-04-17 10:49:11 +08:00
mPipelines.emplace_back(std::move(newPipeline));
}
mInputs = info.inputTensors;
mOutputs = info.outputTensor;
}
Session::~Session() {
for (auto& t : mTensors) {
TensorUtils::clearHandleData(t.second.get());
}
mPipelines.clear();
mBackends.clear();
mTensors.clear();
2019-04-17 10:49:11 +08:00
}
ErrorCode Session::run() const {
2019-08-08 14:42:14 +08:00
if (mNeedResize) {
MNN_ERROR("Can't run session because not resized");
return COMPUTE_SIZE_ERROR;
}
2019-04-17 10:49:11 +08:00
for (auto& iter : mPipelines) {
auto error = iter->execute();
if (NO_ERROR != error) {
return error;
}
}
return NO_ERROR;
}
ErrorCode Session::runWithCallBack(const TensorCallBackWithInfo& before, const TensorCallBackWithInfo& end,
bool sync) const {
2019-08-08 14:42:14 +08:00
if (mNeedResize) {
MNN_ERROR("Can't run session because not resized");
return COMPUTE_SIZE_ERROR;
}
2019-04-17 10:49:11 +08:00
for (auto& iter : mPipelines) {
auto error = iter->executeCallBack(before, end);
if (NO_ERROR != error) {
return error;
}
}
if (sync) {
for (auto& bn : mBackends) {
bn.second->onWaitFinish();
}
}
return NO_ERROR;
}
void Session::_clearCache() {
for (auto& t : mTensors) {
auto describe = TensorUtils::getDescribe(t.second.get());
TensorUtils::clearHandleData(t.second.get());
describe->useCount = t.first;
describe->backend = nullptr;
}
}
ErrorCode Session::resize() {
_clearCache();
for (auto& b : mBackends) {
b.second->onClearBuffer();
}
for (auto& iter : mPipelines) {
auto error = iter->prepare();
if (NO_ERROR != error) {
return error;
}
}
mNeedResize = false;
for (auto& b : mBackends) {
b.second->onAllocateBuffer();
}
return NO_ERROR;
}
const Backend* Session::getBackEnd(const Tensor* tensor) const {
return TensorUtils::getDescribe(tensor)->backend;
}
Tensor* Session::getInput(const char* name) const {
MNN_ASSERT(!mInputs.empty());
if (nullptr == name) {
return mInputs.begin()->second;
}
auto iter = mInputs.find(name);
if (iter == mInputs.end()) {
MNN_PRINT("Error: can't find input: %s\n", name);
return nullptr;
}
return iter->second;
}
Tensor* Session::getOutput(const char* name) const {
MNN_ASSERT(!mOutputs.empty());
if (nullptr == name) {
return mOutputs.begin()->second;
}
auto iter = mOutputs.find(name);
if (iter == mOutputs.end()) {
MNN_PRINT("Error: can't find output: %s\n", name);
return nullptr;
}
return iter->second;
}
const std::map<std::string, Tensor*>& Session::getInputAll() const {
return mInputs;
}
const std::map<std::string, Tensor*>& Session::getOutputAll() const {
return mOutputs;
}
ErrorCode Session::releaseCache() {
for (auto& p : mPipelines) {
auto code = p->releaseCache();
if (NO_ERROR != code) {
return code;
}
}
return NO_ERROR;
}
ErrorCode Session::updateToModel(Net* net) const {
int opSize = net->oplists()->size();
for (int i = 0; i < opSize; ++i) {
auto op = net->oplists()->GetAs<Op>(i);
2019-12-27 22:16:57 +08:00
if (net->usage() == Usage_INFERENCE && op->type() != OpType_Const) {
continue;
}
if (net->usage() == Usage_TRAIN && op->type() != OpType_TrainableParam) {
continue;
}
if (!op->outputIndexes() || op->outputIndexes()->size() != 1) {
continue;
}
auto index = op->outputIndexes()->data()[0];
auto blob = op->main_as_Blob();
if (blob->dataType() != DataType_DT_FLOAT) {
continue;
}
2019-12-27 22:16:57 +08:00
std::shared_ptr<Tensor> tensor = mTensors[index].second;
if (tensor->host<void>() == nullptr && tensor->deviceId() != 0) {
tensor.reset(Tensor::createHostTensorFromDevice(tensor.get(), true));
if (tensor.get() == nullptr) {
MNN_ERROR("failed to copy trained param from device to host\n");
return INVALID_VALUE;
}
}
::memcpy((void*)blob->float32s()->data(), tensor->host<float>(), tensor->size());
}
return NO_ERROR;
}
2019-04-17 10:49:11 +08:00
} // namespace MNN