MNN/source/backend/opencl/execution/image/SoftmaxExecution.cpp

198 lines
7.4 KiB
C++
Raw Normal View History

2019-04-17 10:49:11 +08:00
//
// SoftmaxExecution.cpp
// MNN
//
// Created by MNN on 2019/02/28.
// Copyright © 2018, Alibaba Group Holding Limited
//
#include "backend/opencl/execution/image/SoftmaxExecution.hpp"
2019-12-27 22:16:57 +08:00
#include "core/Macro.h"
#include "backend/opencl/core/OpenCLRunningUtils.hpp"
2019-04-17 10:49:11 +08:00
namespace MNN {
namespace OpenCL {
SoftmaxExecution::SoftmaxExecution(const std::vector<Tensor *> &inputs, int axis, Backend *backend)
: Execution(backend) {
mAxis = axis;
mOpenCLBackend = static_cast<OpenCLBackend *>(backend);
}
bool SoftmaxExecution::buildSoftmaxKernel() {
auto runtime = mOpenCLBackend->getOpenCLRuntime();
if (mKernel.get() == nullptr) {
std::set<std::string> buildOptions;
std::string kernelName;
if (mAxis == 1) {
mKernel = runtime->buildKernel("softmax", "softmax_channel", buildOptions);
2020-11-05 10:14:01 +08:00
} else if (mAxis == 2) {
mKernel = runtime->buildKernel("softmax", "softmax_height", buildOptions);
2020-11-05 10:14:01 +08:00
} else {
MNN_ASSERT(mAxis == 3);
mKernel = runtime->buildKernel("softmax", "softmax_width", buildOptions);
2019-04-17 10:49:11 +08:00
}
mMaxWorkGroupSize = static_cast<uint32_t>(runtime->getMaxWorkGroupSize(mKernel));
}
return true;
}
ErrorCode SoftmaxExecution::onResize(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs) {
2023-06-16 09:42:45 +08:00
startRecord(mOpenCLBackend->getOpenCLRuntime(), mRecording);
2019-04-17 10:49:11 +08:00
Tensor *input = inputs[0];
Tensor *output = outputs[0];
2023-09-04 10:42:11 +08:00
const auto dims = input->buffer().dimensions;
int inside = 1;
int outside = 1;
int channel = 1;
for (int i = 0; i < mAxis; ++i) {
outside *= input->length(i);
}
channel = input->length(mAxis);
for (int i = mAxis + 1; i < dims; ++i) {
inside *= input->length(i);
}
2019-04-17 10:49:11 +08:00
std::vector<int> inputShape = tensorShapeFormat(input);
std::vector<int> outputShape = tensorShapeFormat(output);
2019-12-27 22:16:57 +08:00
2023-09-04 10:42:11 +08:00
const int inputBatch = inputShape.at(0);
const int inputHeight = inputShape.at(1);
const int inputWidth = inputShape.at(2);
const int inputChannels = inputShape.at(3);
2019-04-17 10:49:11 +08:00
const int outputBatch = outputShape.at(0);
const int outputHeight = outputShape.at(1);
const int outputWidth = outputShape.at(2);
const int outputChannels = outputShape.at(3);
2019-12-27 22:16:57 +08:00
2019-04-17 10:49:11 +08:00
const int channelBlocks = UP_DIV(outputChannels, 4);
const int remainChannels = channelBlocks * 4 - outputChannels;
2023-09-04 10:42:11 +08:00
if(inputBatch == outside && channel == inputChannels && inside == inputWidth * inputHeight){
mAxis = 1;
}else if(inputBatch * inputChannels == outside && channel == inputHeight && inside == inputHeight){
mAxis = 2;
}else if(inputBatch * inputChannels * inputHeight == outside && channel == inputWidth && inside == 1){
mAxis = 3;
}
buildSoftmaxKernel();
2023-07-31 14:24:48 +08:00
cl_int ret = CL_SUCCESS;
2020-11-05 10:14:01 +08:00
if (mAxis == 1) {
2023-09-04 10:42:11 +08:00
mGlobalWorkSize = {static_cast<uint32_t>(outputWidth),
static_cast<uint32_t>(outputHeight * outputBatch), 1};
int shape[] = {outputBatch, channelBlocks, outputHeight, outputWidth};
2020-06-16 17:11:54 +08:00
2019-04-17 10:49:11 +08:00
uint32_t idx = 0;
2023-07-31 14:24:48 +08:00
ret |= mKernel.setArg(idx++, mGlobalWorkSize[0]);
ret |= mKernel.setArg(idx++, mGlobalWorkSize[1]);
ret |= mKernel.setArg(idx++, mGlobalWorkSize[2]);
ret |= mKernel.setArg(idx++, openCLImage(input));
ret |= mKernel.setArg(idx++, openCLImage(output));
ret |= mKernel.setArg(idx++, static_cast<int>(outputChannels));
ret |= mKernel.setArg(idx++, remainChannels);
2023-09-04 10:42:11 +08:00
ret |= mKernel.setArg(idx++, shape);
2023-07-31 14:24:48 +08:00
MNN_CHECK_CL_SUCCESS(ret, "setArg SoftmaxExecution Axis_1");
2019-12-27 22:16:57 +08:00
std::string kernelName = "softmax_channel";
mLocalWorkSize = localWS3DDefault(mGlobalWorkSize, mMaxWorkGroupSize, mOpenCLBackend->getOpenCLRuntime(), kernelName, mKernel).first;
2020-11-05 10:14:01 +08:00
} else if (mAxis == 2){
2019-04-17 10:49:11 +08:00
if (mMaxWorkGroupSize > 256) {
mLocalWorkSize = {16, 16, 1};
} else {
mLocalWorkSize = {8, 8, 1};
}
mGlobalWorkSize = {(uint32_t)channelBlocks*outputWidth, (uint32_t)outputBatch, 1};
int shape[] = {outputBatch, channelBlocks, outputHeight, outputWidth};
2023-07-31 14:24:48 +08:00
ret |= mKernel.setArg(0, openCLImage(input));
ret |= mKernel.setArg(1, openCLImage(output));
ret |= mKernel.setArg(2, shape);
MNN_CHECK_CL_SUCCESS(ret, "setArg SoftmaxExecution Axis_2");
2020-11-05 10:14:01 +08:00
} else {
MNN_ASSERT(mAxis == 3);
if (mMaxWorkGroupSize > 256) {
mLocalWorkSize = {16, 16, 1};
} else {
mLocalWorkSize = {8, 8, 1};
}
mGlobalWorkSize = {(uint32_t)channelBlocks, (uint32_t)outputBatch*outputHeight, 1};
int shape[] = {outputBatch, channelBlocks, outputHeight, outputWidth};
2023-07-31 14:24:48 +08:00
ret |= mKernel.setArg(0, openCLImage(input));
ret |= mKernel.setArg(1, openCLImage(output));
ret |= mKernel.setArg(2, shape);
MNN_CHECK_CL_SUCCESS(ret, "setArg SoftmaxExecution Axis_3");
2019-04-17 10:49:11 +08:00
}
2023-06-16 09:42:45 +08:00
recordKernel3d(mKernel, mGlobalWorkSize, mLocalWorkSize, mOpenCLBackend->getOpenCLRuntime());
endRecord(mOpenCLBackend->getOpenCLRuntime(), mRecording);
2019-04-17 10:49:11 +08:00
return NO_ERROR;
}
ErrorCode SoftmaxExecution::onExecute(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs) {
#ifdef LOG_VERBOSE
MNN_PRINT("start SoftmaxExecution onExecute !\n");
#endif
#ifdef ENABLE_OPENCL_TIME_PROFILER
cl::Event event;
run3DKernelDefault(mKernel, mGlobalWorkSize, mLocalWorkSize,
mOpenCLBackend->getOpenCLRuntime(), &event);
int costTime = (int)mOpenCLBackend->getOpenCLRuntime()->getCostTime(&event);
MNN_PRINT("kernel cost:%d us Softmax\n",costTime);
#else
2023-06-16 09:42:45 +08:00
if(mOpenCLBackend->getOpenCLRuntime()->isUseRecordQueue()){
2023-08-21 14:51:54 +08:00
if(mOpenCLBackend->getOpenCLRuntime()->isDevideOpRecord())
mOpenCLBackend->getOpenCLRuntime()->getRecordings()->emplace_back(mRecording);
2023-06-16 09:42:45 +08:00
#ifdef LOG_VERBOSE
MNN_PRINT("End SoftmaxExecution onExecute... \n");
#endif
return NO_ERROR;
}
2019-04-17 10:49:11 +08:00
run3DKernelDefault(mKernel, mGlobalWorkSize, mLocalWorkSize, mOpenCLBackend->getOpenCLRuntime());
#endif
2019-04-17 10:49:11 +08:00
#ifdef LOG_VERBOSE
MNN_PRINT("end SoftmaxExecution onExecute !\n");
#endif
return NO_ERROR;
}
class SoftmaxCreator : public OpenCLBackend::Creator {
public:
virtual Execution *onCreate(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs,
const MNN::Op *op, Backend *backend) const override {
2019-12-27 22:16:57 +08:00
auto dimType = inputs[0]->getDimensionType();
if (dimType == Tensor::TENSORFLOW && inputs[0]->dimensions() == 4) {
int index[4] = {0, 2, 3, 1};
auto axis = op->main_as_Axis()->axis();
if (axis < 0) {
axis = inputs[0]->dimensions() + axis;
}
axis = index[axis];
//1 : channel //2 : height
2020-11-05 10:14:01 +08:00
if (1 == axis || 2 == axis || 3 == axis) {
2019-12-27 22:16:57 +08:00
return new SoftmaxExecution(inputs, axis, backend);
}
return nullptr;
} else {
auto axis = op->main_as_Axis()->axis();
if (axis < 0) {
axis = inputs[0]->dimensions() + axis;
}
2020-11-05 10:14:01 +08:00
if (1 == axis || 2 == axis || 3 == axis) {
2019-12-27 22:16:57 +08:00
return new SoftmaxExecution(inputs, axis, backend);
}
return nullptr;
2019-04-17 10:49:11 +08:00
}
}
};
OpenCLCreatorRegister<SoftmaxCreator> __Softmax_op(OpType_Softmax, IMAGE);
2019-04-17 10:49:11 +08:00
} // namespace OpenCL
} // namespace MNN