MNN/source/backend/opencl/execution/buffer/DepthwiseConvSubgroupBufExe...

295 lines
14 KiB
C++
Raw Normal View History

2023-07-31 14:24:48 +08:00
//
// DepthwiseConvSubgroupBufExecution.cpp
// MNN
//
// Created by MNN on 2023/07/01.
// Copyright © 2018, Alibaba Group Holding Limited
//
#ifndef MNN_OPENCL_BUFFER_CLOSED
#ifdef MNN_SUPPORT_INTEL_SUBGROUP
#include "backend/opencl/execution/buffer/DepthwiseConvSubgroupBufExecution.hpp"
#include "backend/opencl/core/OpenCLRunningUtils.hpp"
#include "core/ConvolutionCommon.hpp"
namespace MNN {
namespace OpenCL {
DepthwiseConvSubgroupBufExecution::DepthwiseConvSubgroupBufExecution(const std::vector<Tensor *> &inputs, const MNN::Op *op, Backend *backend)
2024-04-19 11:58:21 +08:00
: ConvBufCommonExecution(op->main_as_Convolution2D(), backend), CommonExecution(backend, op) {
2023-07-31 14:24:48 +08:00
mOpenCLBackend = static_cast<OpenCLBackend *>(backend);
2024-04-19 11:58:21 +08:00
mResource->mConv2dParams = op->main_as_Convolution2D();
mResource->mConv2dCommonParams = mResource->mConv2dParams->common();
mResource->mStrides = {mResource->mConv2dCommonParams->strideY(), mResource->mConv2dCommonParams->strideX()};
mResource->mDilations = {mResource->mConv2dCommonParams->dilateY(), mResource->mConv2dCommonParams->dilateX()};
2023-07-31 14:24:48 +08:00
2024-04-19 11:58:21 +08:00
int kernelWidth = mResource->mConv2dCommonParams->kernelX();
int kernelHeight = mResource->mConv2dCommonParams->kernelY();
int outputChannel = mResource->mConv2dCommonParams->outputCount();
2023-07-31 14:24:48 +08:00
{
// create tensor for intel filter
2024-04-19 11:58:21 +08:00
mResource->mFilter.reset(Tensor::createDevice<float>(std::vector<int>{1, UP_DIV(outputChannel, 16), kernelWidth * kernelHeight, 16}));
auto res = mOpenCLBackend->onAcquireBuffer(mResource->mFilter.get(), Backend::STATIC);
2023-07-31 14:24:48 +08:00
cl_int ret_code;
if (!res) {
mValid = false;
return;
}
const float *filterDataPtr = nullptr;
int filterDataSize = 0;
std::shared_ptr<ConvolutionCommon::Int8Common> quanCommon;
2024-08-24 15:46:21 +08:00
ConvolutionCommon::getConvParameters(&quanCommon, backend, op, &filterDataPtr, &filterDataSize);
2023-07-31 14:24:48 +08:00
if (filterDataPtr != nullptr) {
std::shared_ptr<Tensor> sourceWeight(Tensor::create<float>(
std::vector<int>{1, outputChannel, kernelWidth, kernelHeight},
(void *)filterDataPtr, Tensor::CAFFE));
std::shared_ptr<Tensor> destWeight(Tensor::create<float>(std::vector<int>{1, UP_DIV(outputChannel, 16), kernelWidth * kernelHeight, 16}));
transformWeight(destWeight.get(), sourceWeight.get());
auto weightDestSize = destWeight->size();
auto buffer_size = destWeight->elementSize();
2025-04-28 11:38:44 +08:00
if (mOpenCLBackend->getPrecision() != BackendConfig::Precision_High) {
2023-07-31 14:24:48 +08:00
buffer_size *= sizeof(half_float::half);
} else {
buffer_size *= sizeof(float);
}
2024-04-19 11:58:21 +08:00
cl::Buffer &weightBuffer = *(cl::Buffer *)mResource->mFilter->buffer().device;
2023-07-31 14:24:48 +08:00
auto runTime = mOpenCLBackend->getOpenCLRuntime();
auto queue = runTime->commandQueue();
auto weight_ptr = queue.enqueueMapBuffer(weightBuffer, CL_TRUE, CL_MAP_WRITE, 0, buffer_size, nullptr,
nullptr, &ret_code);
if (weight_ptr != nullptr && ret_code == CL_SUCCESS) {
2025-04-28 11:38:44 +08:00
if (mOpenCLBackend->getPrecision() != BackendConfig::Precision_High) {
2023-07-31 14:24:48 +08:00
for (int i = 0; i < destWeight->elementSize(); i++) {
((half_float::half *)weight_ptr)[i] = (half_float::half)(destWeight->host<float>()[i]);
}
} else {
::memcpy(weight_ptr, destWeight->host<float>(), buffer_size);
}
} else {
MNN_ERROR("Map error weightPtr == nullptr \n");
}
queue.enqueueUnmapMemObject(weightBuffer, weight_ptr);
}
}
{
2024-04-19 11:58:21 +08:00
int biasSize = mResource->mConv2dParams->common()->outputCount();
2023-07-31 14:24:48 +08:00
int buffer_size = ROUND_UP(biasSize, 16); // pack to 16
2025-04-28 11:38:44 +08:00
if (mOpenCLBackend->getPrecision() != BackendConfig::Precision_High) {
2023-07-31 14:24:48 +08:00
buffer_size *= sizeof(half_float::half);
} else {
buffer_size *= sizeof(float);
}
2024-04-19 11:58:21 +08:00
mResource->mBias.reset(Tensor::createDevice<float>({1, 1, 1, ROUND_UP(biasSize, 16)}));
backend->onAcquireBuffer(mResource->mBias.get(), Backend::STATIC);
cl::Buffer &biasBuffer = openCLBuffer(mResource->mBias.get());
2023-07-31 14:24:48 +08:00
cl_int res;
auto biasPtrCL = mOpenCLBackend->getOpenCLRuntime()->commandQueue().enqueueMapBuffer(
biasBuffer, true, CL_MAP_WRITE, 0, buffer_size, nullptr, nullptr, &res);
if (biasPtrCL != nullptr && res == CL_SUCCESS) {
::memset(biasPtrCL, 0, buffer_size);
2024-04-19 11:58:21 +08:00
if (nullptr != mResource->mConv2dParams->bias()) {
const float *biasDataPtr = mResource->mConv2dParams->bias()->data();
2025-04-28 11:38:44 +08:00
if (mOpenCLBackend->getPrecision() != BackendConfig::Precision_High) {
2023-07-31 14:24:48 +08:00
for (int i = 0; i < biasSize; i++) {
((half_float::half *)biasPtrCL)[i] = (half_float::half)(biasDataPtr[i]);
}
} else {
::memcpy(biasPtrCL, biasDataPtr, biasSize * sizeof(float));
}
}
} else {
MNN_ERROR("Map error biasPtrCL == nullptr \n");
}
mOpenCLBackend->getOpenCLRuntime()->commandQueue().enqueueUnmapMemObject(biasBuffer, biasPtrCL);
}
2024-08-24 15:46:21 +08:00
2024-04-19 11:58:21 +08:00
if (mResource->mConv2dCommonParams->relu() == true) {
mResource->mBuildOptions.emplace("-DRELU");
} else if (mResource->mConv2dCommonParams->relu6() == true) {
mResource->mBuildOptions.emplace("-DRELU6");
2023-07-31 14:24:48 +08:00
}
2025-04-28 11:38:44 +08:00
int type_size = mOpenCLBackend->getPrecision() != BackendConfig::Precision_High ? 2 : 4;
2024-04-19 11:58:21 +08:00
mResource->mBuildOptions.emplace("-DTYPE_SIZE=" + std::to_string(type_size));
2023-07-31 14:24:48 +08:00
}
void DepthwiseConvSubgroupBufExecution::transformWeight(const Tensor *weightDest, const Tensor *source) {
int co = source->length(1);
int KernelY = source->length(2);
int KernelX = source->length(3);
::memset(weightDest->host<float>(), 0, weightDest->size());
auto weightPtr = source->host<float>();
for (int oz = 0; oz < co; ++oz) {
auto src = weightPtr + oz * KernelY * KernelX;
int ozC4 = oz / 16;
int mx = oz % 16;
auto dst = weightDest->host<float>() + weightDest->stride(1) * ozC4 + mx;
for (int i = 0; i < KernelY * KernelX; ++i) {
*(dst + i * weightDest->stride(2)) = src[i];
}
}
}
DepthwiseConvSubgroupBufExecution::~DepthwiseConvSubgroupBufExecution() {
2024-04-19 11:58:21 +08:00
// Do nothing
2023-07-31 14:24:48 +08:00
}
2024-04-19 11:58:21 +08:00
DepthwiseConvSubgroupBufExecution::DepthwiseConvSubgroupBufExecution(std::shared_ptr<ConvBufResource> resource, const MNN::Op* op, Backend *backend) : ConvBufCommonExecution(backend), CommonExecution(backend, op) {
mResource = resource;
mOpenCLBackend = static_cast<OpenCLBackend*>(backend);
const auto *conv2dParams = op->main_as_Convolution2D();
const auto *conv2dCommonParams = conv2dParams->common();
mResource->mConv2dParams = conv2dParams;
mResource->mConv2dCommonParams = conv2dCommonParams;
}
bool DepthwiseConvSubgroupBufExecution::onClone(Backend* bn, const Op* op, Execution** dst) {
if (!mValid) {
return false;
}
if (nullptr == dst) {
return true;
}
*dst = new DepthwiseConvSubgroupBufExecution(mResource, op, bn);
return true;
}
ErrorCode DepthwiseConvSubgroupBufExecution::onEncode(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs) {
mUnits.clear();
2023-07-31 14:24:48 +08:00
auto input = inputs[0];
auto output = outputs[0];
std::vector<int> inputShape = tensorShapeFormat(input);
std::vector<int> outputShape = tensorShapeFormat(output);
2023-12-27 17:26:44 +08:00
auto runTime = mOpenCLBackend->getOpenCLRuntime();
2023-07-31 14:24:48 +08:00
2024-04-19 11:58:21 +08:00
auto padding = ConvolutionCommon::convolutionPad(input, output, mResource->mConv2dCommonParams);
2023-07-31 14:24:48 +08:00
mPaddings[0] = padding.second;//padY
mPaddings[1] = padding.first;//padX
2024-09-12 12:57:57 +08:00
const int batch = outputShape.at(0);
2023-07-31 14:24:48 +08:00
const int outputHeight = outputShape.at(1);
const int outputWidth = outputShape.at(2);
const int outputChannel = outputShape.at(3);
const int inputHeight = inputShape.at(1);
const int inputWidth = inputShape.at(2);
const int inputChannels = inputShape.at(3);
const int inputChannelBlocks = UP_DIV(inputChannels, 4);
2024-04-19 11:58:21 +08:00
const int filterHeight = mResource->mConv2dParams->common()->kernelY();
const int filterWidth = mResource->mConv2dParams->common()->kernelX();
2024-08-24 15:46:21 +08:00
2023-07-31 14:24:48 +08:00
int inputImageShape[2] = {inputHeight, inputWidth};
int outputImageShape[2] = {outputHeight, outputWidth};
2024-04-19 11:58:21 +08:00
int strideShape[2] = {mResource->mStrides[0], mResource->mStrides[1]};
2023-07-31 14:24:48 +08:00
int paddingShape[2] = {mPaddings[0], mPaddings[1]};
int kernelShape[2] = {filterHeight, filterWidth};
2024-04-19 11:58:21 +08:00
int dilationShape[2] = {mResource->mDilations[0], mResource->mDilations[1]};
2023-07-31 14:24:48 +08:00
auto inputpad = TensorUtils::getDescribe(input)->mPads;
auto outputpad = TensorUtils::getDescribe(output)->mPads;
int input_c_pack = TensorUtils::getTensorChannelPack(input);
int output_c_pack = TensorUtils::getTensorChannelPack(output);
2024-09-12 12:57:57 +08:00
int trans_pad_x = inputpad.left;
int trans_pad_y = inputpad.right;
2023-07-31 14:24:48 +08:00
2024-04-19 11:58:21 +08:00
std::set<std::string> buildOptions = mResource->mBuildOptions;
2023-07-31 14:24:48 +08:00
buildOptions.emplace("-DFILTER_HEIGHT=" + std::to_string(kernelShape[0]));
buildOptions.emplace("-DFILTER_WIDTH=" + std::to_string(kernelShape[1]));
buildOptions.emplace("-DDILATION_HEIGHT=" + std::to_string(dilationShape[0]));
buildOptions.emplace("-DDILATION_WIDTH=" + std::to_string(dilationShape[1]));
buildOptions.emplace("-DSTRIDE_HEIGHT=" + std::to_string(strideShape[0]));
buildOptions.emplace("-DSTRIDE_WIDTH=" + std::to_string(strideShape[1]));
if (input_c_pack == 4) {
2024-09-12 12:57:57 +08:00
trans_pad_x = std::max(inputpad.left, mPaddings[1]);
trans_pad_y = std::max(inputpad.right, mPaddings[1]);
2024-04-19 11:58:21 +08:00
Unit unit;
2023-07-31 14:24:48 +08:00
mNeedTranse = true;
2024-09-12 12:57:57 +08:00
mSource.reset(Tensor::createDevice<float>(std::vector<int>{inputShape.at(0), UP_DIV(input->channel(), 16), inputHeight * (inputWidth + trans_pad_x + trans_pad_y), 16}, Tensor::CAFFE_C4));
2023-07-31 14:24:48 +08:00
mOpenCLBackend->onAcquireBuffer(mSource.get(), Backend::DYNAMIC);
mOpenCLBackend->onReleaseBuffer(mSource.get(), Backend::DYNAMIC);
2024-04-19 11:58:21 +08:00
unit.kernel =
2025-04-28 11:38:44 +08:00
mOpenCLBackend->getOpenCLRuntime()->buildKernel("input_transe_buf", "conv_transe_c4_c16", {}, mOpenCLBackend->getPrecision());
2023-07-31 14:24:48 +08:00
uint32_t mMaxWGS_S =
2024-04-19 11:58:21 +08:00
static_cast<uint32_t>(mOpenCLBackend->getOpenCLRuntime()->getMaxWorkGroupSize(unit.kernel));
2023-07-31 14:24:48 +08:00
mTranseGlobalWorkSize = {static_cast<uint32_t>(inputWidth * inputHeight),
static_cast<uint32_t>(UP_DIV(inputShape.at(3), 4)),
static_cast<uint32_t>(inputShape.at(0))};
uint32_t idx = 0;
2024-04-19 11:58:21 +08:00
unit.kernel->get().setArg(idx++, mTranseGlobalWorkSize[0]);
unit.kernel->get().setArg(idx++, mTranseGlobalWorkSize[1]);
unit.kernel->get().setArg(idx++, mTranseGlobalWorkSize[2]);
unit.kernel->get().setArg(idx++, openCLBuffer(input));
unit.kernel->get().setArg(idx++, openCLBuffer(mSource.get()));
unit.kernel->get().setArg(idx++, static_cast<uint32_t>(inputWidth));
unit.kernel->get().setArg(idx++, static_cast<uint32_t>(inputHeight));
unit.kernel->get().setArg(idx++, static_cast<uint32_t>(inputChannels));
2024-09-12 12:57:57 +08:00
unit.kernel->get().setArg(idx++, static_cast<uint32_t>(batch));
2024-04-19 11:58:21 +08:00
unit.kernel->get().setArg(idx++, UP_DIV(inputShape.at(3), 4));
2024-09-12 12:57:57 +08:00
unit.kernel->get().setArg(idx++, static_cast<uint32_t>(trans_pad_x));
unit.kernel->get().setArg(idx++, static_cast<uint32_t>(trans_pad_y));
2024-04-19 11:58:21 +08:00
2025-06-17 11:08:21 +08:00
mTranseLocalWorkSize = localWS3DDefault(mTranseGlobalWorkSize, mMaxWGS_S, mOpenCLBackend->getOpenCLRuntime(),"conv_transe_c4_c16", unit.kernel, mOpenCLBackend->getCLTuneLevel(), "input_transe_buf").first;
2024-04-19 11:58:21 +08:00
mOpenCLBackend->recordKernel3d(unit.kernel, mTranseGlobalWorkSize, mTranseLocalWorkSize);
unit.globalWorkSize = {mTranseGlobalWorkSize[0], mTranseGlobalWorkSize[1], mTranseGlobalWorkSize[2]};
unit.localWorkSize = {mTranseLocalWorkSize[0], mTranseLocalWorkSize[1], mTranseLocalWorkSize[2]};
mUnits.emplace_back(unit);
2023-07-31 14:24:48 +08:00
}
2024-04-19 11:58:21 +08:00
Unit unit;
2023-07-31 14:24:48 +08:00
mGlobalWorkSize = {static_cast<uint32_t>(UP_DIV(outputShape.at(2), 8) * outputShape.at(1)),
static_cast<uint32_t>(ROUND_UP(outputShape.at(3), 16)),
static_cast<uint32_t>(outputShape.at(0))};
mLocalWorkSize = {1, 16, 1};
std::string kernelname = "depthwise_conv_2d_buf_c16_c" + std::to_string(output_c_pack);
2025-04-28 11:38:44 +08:00
unit.kernel = mOpenCLBackend->getOpenCLRuntime()->buildKernel("depthwise_conv2d_subgroup_buf", kernelname, buildOptions, mOpenCLBackend->getPrecision());
2023-07-31 14:24:48 +08:00
uint32_t idx = 0;
if (mNeedTranse) {
2024-04-19 11:58:21 +08:00
unit.kernel->get().setArg(idx++, openCLBuffer(mSource.get()));
2023-07-31 14:24:48 +08:00
}
else {
2024-04-19 11:58:21 +08:00
unit.kernel->get().setArg(idx++, openCLBuffer(input));
2023-07-31 14:24:48 +08:00
}
2024-04-19 11:58:21 +08:00
unit.kernel->get().setArg(idx++, openCLBuffer(output));
unit.kernel->get().setArg(idx++, openCLBuffer(mResource->mFilter.get()));
unit.kernel->get().setArg(idx++, openCLBuffer(mResource->mBias.get()));
unit.kernel->get().setArg(idx++, static_cast<uint32_t>(inputHeight));
unit.kernel->get().setArg(idx++, static_cast<uint32_t>(inputWidth));
unit.kernel->get().setArg(idx++, static_cast<uint32_t>(inputChannels));
2024-09-12 12:57:57 +08:00
unit.kernel->get().setArg(idx++, static_cast<uint32_t>(batch));
unit.kernel->get().setArg(idx++, static_cast<uint32_t>(trans_pad_x));
unit.kernel->get().setArg(idx++, static_cast<uint32_t>(trans_pad_y));
2024-04-19 11:58:21 +08:00
unit.kernel->get().setArg(idx++, static_cast<uint32_t>(outputHeight));
unit.kernel->get().setArg(idx++, static_cast<uint32_t>(outputWidth));
unit.kernel->get().setArg(idx++, static_cast<uint32_t>(outputpad.left));
unit.kernel->get().setArg(idx++, static_cast<uint32_t>(outputpad.right));
unit.kernel->get().setArg(idx++, static_cast<uint32_t>(paddingShape[1]));
unit.kernel->get().setArg(idx++, static_cast<uint32_t>(paddingShape[0]));
2024-08-24 15:46:21 +08:00
2024-04-19 11:58:21 +08:00
mOpenCLBackend->recordKernel3d(unit.kernel, mGlobalWorkSize, mLocalWorkSize);
unit.globalWorkSize = {mGlobalWorkSize[0], mGlobalWorkSize[1], mGlobalWorkSize[2]};
unit.localWorkSize = {mLocalWorkSize[0], mLocalWorkSize[1], mLocalWorkSize[2]};
mUnits.emplace_back(unit);
2023-07-31 14:24:48 +08:00
return NO_ERROR;
}
} // namespace OpenCL
} // namespace MNN
#endif /* MNN_SUPPORT_INTEL_SUBGROUP */
#endif /* MNN_OPENCL_BUFFER_CLOSED */