MNN/source/backend/opencl/execution/buffer/ArgMaxBufExecution.cpp

154 lines
6.8 KiB
C++
Raw Normal View History

2023-09-04 10:42:11 +08:00
//
// ArgMaxBufExecution.cpp
// MNN
//
// Created by MNN on 2023/08/11.
// Copyright © 2018, Alibaba Group Holding Limited
//
#ifndef MNN_OPENCL_BUFFER_CLOSED
#include "backend/opencl/execution/buffer/ArgMaxBufExecution.hpp"
namespace MNN {
namespace OpenCL {
2024-04-19 11:58:21 +08:00
ArgMaxBufExecution::ArgMaxBufExecution(const std::string &compute, const MNN::Op* op, Backend* backend, const int axis) : CommonExecution(backend, op) {
2023-09-04 10:42:11 +08:00
mBuildOptions.emplace(compute);
mAxis = axis;
// Do nothing
2024-04-19 11:58:21 +08:00
mOpenCLBackend = static_cast<OpenCLBackend *>(backend);
std::set<std::string> buildOptions = mBuildOptions;
buildOptions.emplace("-DARGMAX_LOCAL_SIZE=512");
auto kernel = mOpenCLBackend->getOpenCLRuntime()->buildKernel("argmax_buf", "argmax_channel_buf", buildOptions);
mMaxWorkGroupSize = static_cast<uint32_t>(mOpenCLBackend->getOpenCLRuntime()->getMaxWorkGroupSize(kernel));
2023-09-04 10:42:11 +08:00
}
2024-04-19 11:58:21 +08:00
int ArgMaxBufExecution::getLocalSize(int size, int maxGroupSize){
int local_size = 1;
while(local_size * 2 <= maxGroupSize && local_size * 2 <= size){
local_size *= 2;
}
return local_size;
}
ErrorCode ArgMaxBufExecution::onEncode(const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs) {
mUnits.resize(1);
auto &unit = mUnits[0];
auto runtime = mOpenCLBackend->getOpenCLRuntime();
auto MaxLocalSize = std::min(runtime->getMaxWorkItemSizes()[0], mMaxWorkGroupSize);
2023-09-04 10:42:11 +08:00
auto input = inputs[0];
auto output = outputs[0];
if(mAxis < 0){
mAxis = input->dimensions() + mAxis;
}
int inside = 1;
int outside = 1;
for(int i = 0; i < mAxis; ++i){
outside *= input->length(i);
}
for(int i = mAxis + 1; i < input->dimensions(); ++i){
inside *= input->length(i);
}
int dim = input->length(mAxis);
std::vector<int> inputShape = tensorShapeFormat(input);
std::vector<int> outputShape = tensorShapeFormat(output);
int batch = inputShape.at(0);
int inputHeight = inputShape.at(1);
int inputWidth = inputShape.at(2);
int inputChannels = inputShape.at(3);
int inputChannelBlocks = (inputChannels + 3) / 4;
int outputBatch = outputShape.at(0);
int outputHeight = outputShape.at(1);
int outputWidth = outputShape.at(2);
int outputChannels = outputShape.at(3);
int outputChannelBlocks = (outputChannels + 3) / 4;
2024-04-19 11:58:21 +08:00
int localSize = getLocalSize(dim, MaxLocalSize);
if(localSize < 4){
localSize = 1;
}
std::set<std::string> buildOptions = mBuildOptions;
buildOptions.emplace("-DARGMAX_LOCAL_SIZE=" + std::to_string(localSize));
std::string kernelName;
2023-09-04 10:42:11 +08:00
if(batch * inputHeight * inputChannels == outside && 1 == inside && dim == inputWidth){
2024-04-19 11:58:21 +08:00
kernelName = "argmax_width_buf";
unit.kernel = runtime->buildKernel("argmax_buf", kernelName, buildOptions);
mGlobalWorkSize = {static_cast<uint32_t>(localSize), static_cast<uint32_t>(outputHeight), static_cast<uint32_t>(outputBatch * outputChannelBlocks)};
2023-09-04 10:42:11 +08:00
}else if(batch * inputChannels == outside && inputWidth == inside && dim == inputHeight){
2024-04-19 11:58:21 +08:00
kernelName = "argmax_height_buf";
unit.kernel = runtime->buildKernel("argmax_buf", kernelName, buildOptions);
mGlobalWorkSize = {static_cast<uint32_t>(localSize), static_cast<uint32_t>(outputWidth), static_cast<uint32_t>(outputBatch * outputChannelBlocks)};
2023-09-04 10:42:11 +08:00
}else if(batch == outside && inputWidth * inputHeight == inside && dim == inputChannels){
if(output->buffer().dimensions == 1){
2024-04-19 11:58:21 +08:00
buildOptions.emplace("-DARGMAX_CHANNEL_DIM1");
2023-09-04 10:42:11 +08:00
}
2024-04-19 11:58:21 +08:00
kernelName = "argmax_channel_buf";
unit.kernel = runtime->buildKernel("argmax_buf", kernelName, buildOptions);
mGlobalWorkSize = {static_cast<uint32_t>(localSize), static_cast<uint32_t>(outputWidth * outputHeight), static_cast<uint32_t>(outputBatch * outputChannels)};
2023-09-04 10:42:11 +08:00
}else if(1 == outside && inputWidth * inputHeight * inputChannels == inside && dim == batch){
2024-04-19 11:58:21 +08:00
kernelName = "argmax_batch_buf";
unit.kernel = runtime->buildKernel("argmax_buf", kernelName, buildOptions);
mGlobalWorkSize = {static_cast<uint32_t>(localSize), static_cast<uint32_t>(outputWidth * outputHeight), static_cast<uint32_t>(outputChannelBlocks)};
2023-09-04 10:42:11 +08:00
}
2024-04-19 11:58:21 +08:00
mMaxWorkGroupSize = static_cast<uint32_t>(runtime->getMaxWorkGroupSize(unit.kernel));
mLocalSize = {(uint32_t)(localSize), 1, 1};
2023-09-04 10:42:11 +08:00
uint32_t idx = 0;
cl_int ret = CL_SUCCESS;
2024-04-19 11:58:21 +08:00
ret |= unit.kernel->get().setArg(idx++, mGlobalWorkSize[0]);
ret |= unit.kernel->get().setArg(idx++, mGlobalWorkSize[1]);
ret |= unit.kernel->get().setArg(idx++, mGlobalWorkSize[2]);
ret |= unit.kernel->get().setArg(idx++, openCLBuffer(input));
ret |= unit.kernel->get().setArg(idx++, openCLBuffer(output));
ret |= unit.kernel->get().setArg(idx++, inputWidth);
ret |= unit.kernel->get().setArg(idx++, inputHeight);
ret |= unit.kernel->get().setArg(idx++, inputChannels);
ret |= unit.kernel->get().setArg(idx++, batch);
ret |= unit.kernel->get().setArg(idx++, inputChannelBlocks);
ret |= unit.kernel->get().setArg(idx++, outputWidth);
ret |= unit.kernel->get().setArg(idx++, outputHeight);
ret |= unit.kernel->get().setArg(idx++, outputChannels);
ret |= unit.kernel->get().setArg(idx++, outputChannelBlocks);
2023-09-04 10:42:11 +08:00
MNN_CHECK_CL_SUCCESS(ret, "setArg ArgMaxBufExecution");
2024-04-19 11:58:21 +08:00
if(localSize == 1){
mLocalSize = localWS3DDefault(mGlobalWorkSize, mMaxWorkGroupSize, mOpenCLBackend->getOpenCLRuntime(), kernelName, unit.kernel).first;
2023-12-27 17:26:44 +08:00
}
2024-04-19 11:58:21 +08:00
mOpenCLBackend->recordKernel3d(unit.kernel, mGlobalWorkSize, mLocalSize);
unit.globalWorkSize = {mGlobalWorkSize[0], mGlobalWorkSize[1], mGlobalWorkSize[2]};
unit.localWorkSize = {mLocalSize[0], mLocalSize[1], mLocalSize[2]};
2023-09-04 10:42:11 +08:00
return NO_ERROR;
}
class ArgMaxBufCreator : public OpenCLBackend::Creator {
public:
virtual Execution* onCreate(const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs,
const MNN::Op* op, Backend* backend) const override {
for (int i = 0; i < inputs.size(); ++i) {
TensorUtils::setTensorSupportPack(inputs[i], false);
}
for (int i = 0; i < outputs.size(); ++i) {
TensorUtils::setTensorSupportPack(outputs[i], false);
}
auto inputDimensionFromat = TensorUtils::getDescribe(inputs[0])->dimensionFormat;
if(inputDimensionFromat == MNN_DATA_FORMAT_NC4HW4){
return nullptr;
}
int axis = op->main_as_ArgMax()->axis();
if (op->type() == OpType_ArgMax) {
2024-04-19 11:58:21 +08:00
return new ArgMaxBufExecution("-DARGMAX", op, backend, axis);
2023-09-04 10:42:11 +08:00
}else{
2024-04-19 11:58:21 +08:00
return new ArgMaxBufExecution("", op, backend, axis);
2023-09-04 10:42:11 +08:00
}
}
};
2023-12-27 17:26:44 +08:00
REGISTER_OPENCL_OP_CREATOR(ArgMaxBufCreator, OpType_ArgMax, BUFFER);
REGISTER_OPENCL_OP_CREATOR(ArgMaxBufCreator, OpType_ArgMin, BUFFER);
2023-09-04 10:42:11 +08:00
} // namespace OpenCL
} // namespace MNN
#endif /* MNN_OPENCL_BUFFER_CLOSED */