2023-09-04 10:42:11 +08:00
|
|
|
//
|
|
|
|
// CastBufExecution.cpp
|
|
|
|
// MNN
|
|
|
|
//
|
|
|
|
// Created by MNN on 2023/08/11.
|
|
|
|
// Copyright © 2018, Alibaba Group Holding Limited
|
|
|
|
//
|
|
|
|
|
|
|
|
#ifndef MNN_OPENCL_BUFFER_CLOSED
|
|
|
|
#include "backend/opencl/execution/buffer/CastBufExecution.hpp"
|
|
|
|
|
|
|
|
namespace MNN {
|
|
|
|
namespace OpenCL {
|
|
|
|
|
2024-04-19 11:58:21 +08:00
|
|
|
CastBufExecution::CastBufExecution(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs, const std::string& compute, const MNN::Op* op, Backend* backend) : CommonExecution(backend, op) {
|
|
|
|
mUnits.resize(1);
|
|
|
|
auto &unit = mUnits[0];
|
2023-09-04 10:42:11 +08:00
|
|
|
mBuildOptions.emplace(compute);
|
2024-04-19 11:58:21 +08:00
|
|
|
auto runtime = static_cast<OpenCLBackend*>(backend)->getOpenCLRuntime();
|
|
|
|
unit.kernel = runtime->buildKernel("cast_buf", "cast_buf", mBuildOptions, inputs[0], outputs[0]);
|
|
|
|
mMaxWorkGroupSize = static_cast<uint32_t>(runtime->getMaxWorkGroupSize(unit.kernel));
|
2023-09-04 10:42:11 +08:00
|
|
|
}
|
2024-04-19 11:58:21 +08:00
|
|
|
ErrorCode CastBufExecution::onEncode(const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs) {
|
|
|
|
auto &unit = mUnits[0];
|
2023-09-04 10:42:11 +08:00
|
|
|
Tensor* input = inputs[0];
|
|
|
|
Tensor* output = outputs[0];
|
|
|
|
auto openCLBackend = static_cast<OpenCLBackend*>(backend());
|
|
|
|
auto runtime = openCLBackend->getOpenCLRuntime();
|
|
|
|
|
|
|
|
std::vector<int> inputShape = tensorShapeFormat(input);
|
|
|
|
std::vector<int> outputShape = tensorShapeFormat(output);
|
|
|
|
|
|
|
|
int batch = outputShape.at(0);
|
|
|
|
int outputHeight = outputShape.at(1);
|
|
|
|
int outputWidth = outputShape.at(2);
|
|
|
|
int channels = outputShape.at(3);
|
|
|
|
|
|
|
|
int channelBlocks = (channels + 3) / 4;
|
|
|
|
|
|
|
|
mGlobalWorkSize = {
|
|
|
|
static_cast<uint32_t>(outputWidth),
|
|
|
|
static_cast<uint32_t>(outputHeight),
|
|
|
|
static_cast<uint32_t>(batch * channelBlocks),
|
|
|
|
};
|
|
|
|
|
|
|
|
uint32_t idx = 0;
|
|
|
|
cl_int ret = CL_SUCCESS;
|
2024-04-19 11:58:21 +08:00
|
|
|
ret |= unit.kernel->get().setArg(idx++, mGlobalWorkSize[0]);
|
|
|
|
ret |= unit.kernel->get().setArg(idx++, mGlobalWorkSize[1]);
|
|
|
|
ret |= unit.kernel->get().setArg(idx++, mGlobalWorkSize[2]);
|
|
|
|
ret |= unit.kernel->get().setArg(idx++, openCLBuffer(input));
|
|
|
|
ret |= unit.kernel->get().setArg(idx++, openCLBuffer(output));
|
|
|
|
ret |= unit.kernel->get().setArg(idx++, outputWidth);
|
|
|
|
ret |= unit.kernel->get().setArg(idx++, outputHeight);
|
|
|
|
ret |= unit.kernel->get().setArg(idx++, channelBlocks);
|
2023-09-04 10:42:11 +08:00
|
|
|
MNN_CHECK_CL_SUCCESS(ret, "setArg CastBufExecution");
|
|
|
|
|
|
|
|
std::string kernelName = "cast_buf";
|
2024-04-19 11:58:21 +08:00
|
|
|
mLocalSize = localWS3DDefault(mGlobalWorkSize, mMaxWorkGroupSize, openCLBackend->getOpenCLRuntime(), kernelName, unit.kernel).first;
|
|
|
|
openCLBackend->recordKernel3d(unit.kernel, mGlobalWorkSize, mLocalSize);
|
|
|
|
unit.globalWorkSize = {mGlobalWorkSize[0], mGlobalWorkSize[1], mGlobalWorkSize[2]};
|
|
|
|
unit.localWorkSize = {mLocalSize[0], mLocalSize[1], mLocalSize[2]};
|
2024-08-24 15:46:21 +08:00
|
|
|
|
2023-09-04 10:42:11 +08:00
|
|
|
return NO_ERROR;
|
|
|
|
}
|
|
|
|
|
|
|
|
static DataType _mapDataType(DataType src) {
|
|
|
|
if (DataType_DT_BOOL == src) {
|
|
|
|
return DataType_DT_INT32;
|
|
|
|
}
|
|
|
|
if (DataType_DT_INT64 == src) {
|
|
|
|
return DataType_DT_INT32;
|
|
|
|
}
|
|
|
|
if (DataType_DT_DOUBLE == src) {
|
|
|
|
return DataType_DT_FLOAT;
|
|
|
|
}
|
|
|
|
return src;
|
|
|
|
}
|
|
|
|
|
|
|
|
class CastBufCreator : public OpenCLBackend::Creator {
|
|
|
|
public:
|
|
|
|
virtual Execution* onCreate(const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs,
|
|
|
|
const MNN::Op* op, Backend* backend) const override {
|
|
|
|
for (int i = 0; i < inputs.size(); ++i) {
|
|
|
|
TensorUtils::setTensorSupportPack(inputs[i], false);
|
|
|
|
}
|
|
|
|
for (int i = 0; i < outputs.size(); ++i) {
|
|
|
|
TensorUtils::setTensorSupportPack(outputs[i], false);
|
|
|
|
}
|
|
|
|
auto cast = op->main_as_CastParam();
|
|
|
|
// cast param srcT is invalid
|
|
|
|
// auto srcT = _mapDataType(cast->srcT());
|
|
|
|
auto dstT = _mapDataType(cast->dstT());
|
|
|
|
|
|
|
|
const auto &inputDataType = inputs[0]->getType();
|
|
|
|
if (inputDataType.bytes() == 4 && cast->dstT() == MNN::DataType_DT_BOOL) {
|
2024-04-19 11:58:21 +08:00
|
|
|
return new CastBufExecution(inputs, outputs, "-DTO_BOOL", op, backend);
|
|
|
|
} else {
|
|
|
|
return new CastBufExecution(inputs, outputs, "", op, backend);
|
2023-09-04 10:42:11 +08:00
|
|
|
}
|
|
|
|
return nullptr;
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
2023-12-27 17:26:44 +08:00
|
|
|
REGISTER_OPENCL_OP_CREATOR(CastBufCreator, OpType_Cast, BUFFER);
|
|
|
|
|
2023-09-04 10:42:11 +08:00
|
|
|
} // namespace OpenCL
|
|
|
|
} // namespace MNN
|
|
|
|
#endif /* MNN_OPENCL_BUFFER_CLOSED */
|