MNN/source/backend/opencl/execution/buffer/RangeBufExecution.cpp

90 lines
3.5 KiB
C++
Raw Normal View History

2023-09-04 10:42:11 +08:00
//
// RangeBufExecution.cpp
// MNN
//
// Created by MNN on 2023/08/11.
// Copyright © 2018, Alibaba Group Holding Limited
//
#ifndef MNN_OPENCL_BUFFER_CLOSED
#include "backend/opencl/execution/buffer/RangeBufExecution.hpp"
namespace MNN {
namespace OpenCL {
2024-04-19 11:58:21 +08:00
RangeBufExecution::RangeBufExecution(const std::string &compute, const MNN::Op *Op, Backend* backend) : CommonExecution(backend, Op) {
2023-09-04 10:42:11 +08:00
mBuildOptions.emplace(compute);
// Do nothing
}
2024-04-19 11:58:21 +08:00
ErrorCode RangeBufExecution::onEncode(const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs) {
mUnits.resize(1);
auto &unit = mUnits[0];
2023-09-04 10:42:11 +08:00
auto openCLBackend = static_cast<OpenCLBackend*>(backend());
auto runtime = openCLBackend->getOpenCLRuntime();
2024-04-19 11:58:21 +08:00
unit.kernel = runtime->buildKernel("range_buf", "range_buf", mBuildOptions, inputs[0], outputs[0]);
mMaxWorkGroupSize = static_cast<uint32_t>(runtime->getMaxWorkGroupSize(unit.kernel));
2023-09-04 10:42:11 +08:00
std::vector<int> outputShape = tensorShapeFormat(outputs[0]);
int batch = outputShape.at(0);
int outputHeight = outputShape.at(1);
int outputWidth = outputShape.at(2);
int channels = outputShape.at(3);
int channelBlocks = (channels + 3) / 4;
mGlobalWorkSize = {
static_cast<uint32_t>(outputWidth),
static_cast<uint32_t>(outputHeight),
static_cast<uint32_t>(batch * channelBlocks)
};
uint32_t idx = 0;
cl_int ret = CL_SUCCESS;
2024-04-19 11:58:21 +08:00
ret |= unit.kernel->get().setArg(idx++, mGlobalWorkSize[0]);
ret |= unit.kernel->get().setArg(idx++, mGlobalWorkSize[1]);
ret |= unit.kernel->get().setArg(idx++, mGlobalWorkSize[2]);
ret |= unit.kernel->get().setArg(idx++, openCLBuffer(inputs[0]));
ret |= unit.kernel->get().setArg(idx++, openCLBuffer(inputs[2]));
ret |= unit.kernel->get().setArg(idx++, openCLBuffer(outputs[0]));
ret |= unit.kernel->get().setArg(idx++, outputWidth);
ret |= unit.kernel->get().setArg(idx++, outputHeight);
ret |= unit.kernel->get().setArg(idx++, channels);
ret |= unit.kernel->get().setArg(idx++, channelBlocks);
2023-09-04 10:42:11 +08:00
MNN_CHECK_CL_SUCCESS(ret, "setArg RangeBufExecution");
std::string kernelName = "range_buf";
2024-04-19 11:58:21 +08:00
mLocalSize = localWS3DDefault(mGlobalWorkSize, mMaxWorkGroupSize, openCLBackend->getOpenCLRuntime(), kernelName, unit.kernel).first;
openCLBackend->recordKernel3d(unit.kernel, mGlobalWorkSize, mLocalSize);
unit.globalWorkSize = {mGlobalWorkSize[0], mGlobalWorkSize[1], mGlobalWorkSize[2]};
unit.localWorkSize = {mLocalSize[0], mLocalSize[1], mLocalSize[2]};
2023-09-04 10:42:11 +08:00
return NO_ERROR;
}
class RangeBufCreator : public OpenCLBackend::Creator {
public:
virtual Execution* onCreate(const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs,
const MNN::Op* op, Backend* backend) const override {
for (int i = 0; i < inputs.size(); ++i) {
TensorUtils::setTensorSupportPack(inputs[i], false);
}
for (int i = 0; i < outputs.size(); ++i) {
TensorUtils::setTensorSupportPack(outputs[i], false);
}
auto code = inputs[0]->getType().code;
switch (code) {
case halide_type_int:
2024-04-19 11:58:21 +08:00
return new RangeBufExecution("-DUSE_INT", op, backend);
2023-09-04 10:42:11 +08:00
case halide_type_float:
2024-04-19 11:58:21 +08:00
return new RangeBufExecution("-DUSE_FLOAT", op, backend);
2023-09-04 10:42:11 +08:00
default:
return nullptr;
}
}
};
2023-12-27 17:26:44 +08:00
REGISTER_OPENCL_OP_CREATOR(RangeBufCreator, OpType_Range, BUFFER);
2023-09-04 10:42:11 +08:00
} // namespace OpenCL
} // namespace MNN
#endif /* MNN_OPENCL_BUFFER_CLOSED */