mirror of https://github.com/alibaba/MNN.git
215 lines
9.0 KiB
C++
215 lines
9.0 KiB
C++
|
//
|
||
|
// CPURNNSequenceGRU.cpp
|
||
|
// MNN
|
||
|
//
|
||
|
// Created by MNN on 2019/03/19.
|
||
|
// Copyright © 2018, Alibaba Group Holding Limited
|
||
|
//
|
||
|
|
||
|
#include "CPURNNSequenceGRU.hpp"
|
||
|
#include <math.h>
|
||
|
#include "CPUBackend.hpp"
|
||
|
#include "Matrix.hpp"
|
||
|
|
||
|
#ifdef MNN_USE_NEON
|
||
|
#include <arm_neon.h>
|
||
|
#endif
|
||
|
|
||
|
namespace MNN {
|
||
|
|
||
|
static inline float sigmoid(float x) {
|
||
|
return 1. / (1. + expf(-x));
|
||
|
}
|
||
|
|
||
|
// implement GRU cell function
|
||
|
// Ref: tensorflow/python/ops/rnn_cell_impl.py
|
||
|
static void runRNNStep(const float* input, const int inputLength, std::shared_ptr<Tensor>& hiddenState,
|
||
|
const int numUnits, std::shared_ptr<Tensor>& gateWeight, std::shared_ptr<Tensor>& gateBias,
|
||
|
std::shared_ptr<Tensor>& candidateWeight, std::shared_ptr<Tensor>& candidateBias,
|
||
|
std::shared_ptr<Tensor>& inputAndState, std::shared_ptr<Tensor>& gate) {
|
||
|
// gate is (r_t, z_t)
|
||
|
auto inputAndStatePtr = inputAndState->host<float>();
|
||
|
auto hiddenStatePtr = hiddenState->host<float>();
|
||
|
::memcpy(inputAndStatePtr, input, inputLength * sizeof(float));
|
||
|
::memcpy(inputAndStatePtr + inputLength, hiddenStatePtr, numUnits * sizeof(float));
|
||
|
Math::Matrix::multi(gate.get(), inputAndState.get(), gateWeight.get());
|
||
|
Math::Matrix::add(gate.get(), gate.get(), gateBias.get());
|
||
|
const int gateSize = gate->elementSize();
|
||
|
auto gatePtr = gate->host<float>();
|
||
|
for (int i = 0; i < gateSize; ++i) {
|
||
|
gatePtr[i] = sigmoid(gatePtr[i]);
|
||
|
}
|
||
|
|
||
|
{
|
||
|
// reset gate
|
||
|
auto resetGatePtr = inputAndStatePtr + inputLength;
|
||
|
int k = 0;
|
||
|
#ifdef MNN_USE_NEON
|
||
|
for (; k <= numUnits - 16; k += 16) {
|
||
|
float32x4_t g0 = vld1q_f32(gatePtr + k);
|
||
|
float32x4_t g1 = vld1q_f32(gatePtr + k + 4);
|
||
|
float32x4_t g2 = vld1q_f32(gatePtr + k + 8);
|
||
|
float32x4_t g3 = vld1q_f32(gatePtr + k + 12);
|
||
|
float32x4_t h0 = vld1q_f32(hiddenStatePtr + k);
|
||
|
float32x4_t h1 = vld1q_f32(hiddenStatePtr + k + 4);
|
||
|
float32x4_t h2 = vld1q_f32(hiddenStatePtr + k + 8);
|
||
|
float32x4_t h3 = vld1q_f32(hiddenStatePtr + k + 12);
|
||
|
auto mul0 = vmulq_f32(g0, h0);
|
||
|
auto mul1 = vmulq_f32(g1, h1);
|
||
|
auto mul2 = vmulq_f32(g2, h2);
|
||
|
auto mul3 = vmulq_f32(g3, h3);
|
||
|
vst1q_f32(resetGatePtr + k, mul0);
|
||
|
vst1q_f32(resetGatePtr + k + 4, mul1);
|
||
|
vst1q_f32(resetGatePtr + k + 8, mul2);
|
||
|
vst1q_f32(resetGatePtr + k + 12, mul3);
|
||
|
}
|
||
|
for (; k <= numUnits - 4; k += 4) {
|
||
|
float32x4_t g = vld1q_f32(gatePtr + k);
|
||
|
float32x4_t h = vld1q_f32(hiddenStatePtr + k);
|
||
|
auto mul = vmulq_f32(g0, h0);
|
||
|
vst1q_f32(resetGatePtr + k, mul);
|
||
|
}
|
||
|
#endif
|
||
|
for (; k < numUnits; ++k) {
|
||
|
resetGatePtr[k] = gatePtr[k] * hiddenStatePtr[k];
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// use r_t to apply Matrix multi and add
|
||
|
gate->setLength(1, numUnits);
|
||
|
Math::Matrix::multi(gate.get(), inputAndState.get(), candidateWeight.get());
|
||
|
Math::Matrix::add(gate.get(), gate.get(), candidateBias.get());
|
||
|
|
||
|
for (int i = 0; i < numUnits; ++i) {
|
||
|
hiddenStatePtr[i] =
|
||
|
gatePtr[numUnits + i] * hiddenStatePtr[i] + (1.0 - gatePtr[numUnits + i]) * tanhf(gatePtr[i]);
|
||
|
}
|
||
|
// reset gate shape fot the next iteration
|
||
|
gate->setLength(1, 2 * numUnits);
|
||
|
}
|
||
|
|
||
|
CPURNNSequenceGRU::CPURNNSequenceGRU(const Op* op, Backend* backend) : MNN::Execution(backend) {
|
||
|
auto rnnParam = op->main_as_RNNParam();
|
||
|
mKeepAllOutputs = rnnParam->keepAllOutputs();
|
||
|
mIsBidirectionalRNN = rnnParam->isBidirectionalRNN();
|
||
|
mNumUnits = rnnParam->numUnits();
|
||
|
|
||
|
auto copyData = [=](std::shared_ptr<Tensor>& tensor, const Blob* src) {
|
||
|
std::vector<int> shape;
|
||
|
for (int i = 0; i < src->dims()->size(); ++i) {
|
||
|
shape.push_back(src->dims()->data()[i]);
|
||
|
}
|
||
|
tensor.reset(Tensor::createDevice<float>(shape));
|
||
|
backend->onAcquireBuffer(tensor.get(), Backend::STATIC);
|
||
|
::memcpy(tensor->host<float>(), src->float32s()->data(), src->float32s()->size() * sizeof(float));
|
||
|
};
|
||
|
copyData(mFwGateWeight, rnnParam->fwGateWeight());
|
||
|
copyData(mFwGateBias, rnnParam->fwGateBias());
|
||
|
copyData(mFwCandidateWeight, rnnParam->fwCandidateWeight());
|
||
|
copyData(mFwCandidateBias, rnnParam->fwCandidateBias());
|
||
|
MNN_ASSERT(mFwCandidateBias->length(0) == mNumUnits);
|
||
|
if (mIsBidirectionalRNN) {
|
||
|
copyData(mBwGateWeight, rnnParam->bwGateWeight());
|
||
|
copyData(mBwGateBias, rnnParam->bwGateBias());
|
||
|
copyData(mBwCandidateWeight, rnnParam->bwCandidateWeight());
|
||
|
copyData(mBwCandidateBias, rnnParam->bwCandidateBias());
|
||
|
}
|
||
|
}
|
||
|
|
||
|
CPURNNSequenceGRU::~CPURNNSequenceGRU() {
|
||
|
backend()->onReleaseBuffer(mFwGateWeight.get(), Backend::STATIC);
|
||
|
backend()->onReleaseBuffer(mFwGateBias.get(), Backend::STATIC);
|
||
|
backend()->onReleaseBuffer(mFwCandidateWeight.get(), Backend::STATIC);
|
||
|
backend()->onReleaseBuffer(mFwCandidateBias.get(), Backend::STATIC);
|
||
|
if (mIsBidirectionalRNN) {
|
||
|
backend()->onReleaseBuffer(mBwGateWeight.get(), Backend::STATIC);
|
||
|
backend()->onReleaseBuffer(mBwGateBias.get(), Backend::STATIC);
|
||
|
backend()->onReleaseBuffer(mBwCandidateWeight.get(), Backend::STATIC);
|
||
|
backend()->onReleaseBuffer(mBwCandidateBias.get(), Backend::STATIC);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
ErrorCode CPURNNSequenceGRU::onResize(const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs) {
|
||
|
auto input = inputs[0];
|
||
|
const int inputLastDimSize = input->length(2);
|
||
|
mHiddenState.reset(Tensor::createDevice<float>(std::vector<int>{1, mNumUnits}));
|
||
|
mInputAndState.reset(Tensor::createDevice<float>(std::vector<int>{1, inputLastDimSize + mNumUnits}));
|
||
|
mGate.reset(Tensor::createDevice<float>(std::vector<int>{1, 2 * mNumUnits}));
|
||
|
|
||
|
backend()->onAcquireBuffer(mHiddenState.get(), Backend::DYNAMIC);
|
||
|
backend()->onAcquireBuffer(mInputAndState.get(), Backend::DYNAMIC);
|
||
|
backend()->onAcquireBuffer(mGate.get(), Backend::DYNAMIC);
|
||
|
|
||
|
backend()->onReleaseBuffer(mHiddenState.get(), Backend::DYNAMIC);
|
||
|
backend()->onReleaseBuffer(mInputAndState.get(), Backend::DYNAMIC);
|
||
|
backend()->onReleaseBuffer(mGate.get(), Backend::DYNAMIC);
|
||
|
|
||
|
return NO_ERROR;
|
||
|
}
|
||
|
|
||
|
ErrorCode CPURNNSequenceGRU::onExecute(const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs) {
|
||
|
// firstly set the hidden state to zero
|
||
|
float* const hiddenStatePtr = mHiddenState->host<float>();
|
||
|
const int hiddenStateDataSize = mHiddenState->size();
|
||
|
::memset(hiddenStatePtr, 0, hiddenStateDataSize);
|
||
|
|
||
|
auto input = inputs[0];
|
||
|
auto output = outputs[0];
|
||
|
float* const inputPtr = input->host<float>();
|
||
|
float* const outputPtr = output->host<float>();
|
||
|
const int batchSize = input->length(0);
|
||
|
const int batchStride = input->stride(0);
|
||
|
const int inputSequenceLength = input->length(1);
|
||
|
const int inputCodeLength = input->length(2);
|
||
|
|
||
|
for (int b = 0; b < batchSize; ++b) {
|
||
|
for (int i = 0; i < inputSequenceLength; ++i) {
|
||
|
const int inputOffset = b * batchStride + i * inputCodeLength;
|
||
|
runRNNStep(inputPtr + inputOffset, inputCodeLength, mHiddenState, mNumUnits, mFwGateWeight, mFwGateBias,
|
||
|
mFwCandidateWeight, mFwCandidateBias, mInputAndState, mGate);
|
||
|
if (mKeepAllOutputs) {
|
||
|
::memcpy(outputPtr + b * output->stride(0) + i * mNumUnits, hiddenStatePtr, hiddenStateDataSize);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if (!mKeepAllOutputs) {
|
||
|
::memcpy(outputPtr, hiddenStatePtr, hiddenStateDataSize);
|
||
|
}
|
||
|
// backward rnn
|
||
|
if (mIsBidirectionalRNN) {
|
||
|
::memset(hiddenStatePtr, 0, hiddenStateDataSize);
|
||
|
auto outputBw = outputs[1];
|
||
|
float* const outputBwPtr = outputBw->host<float>();
|
||
|
for (int b = 0; b < batchSize; ++b) {
|
||
|
for (int i = inputSequenceLength - 1; i >= 0; i--) {
|
||
|
const int inputOffset = b * batchStride + i * inputCodeLength;
|
||
|
runRNNStep(inputPtr + inputOffset, inputCodeLength, mHiddenState, mNumUnits, mBwGateWeight, mBwGateBias,
|
||
|
mBwCandidateWeight, mBwCandidateBias, mInputAndState, mGate);
|
||
|
if (mKeepAllOutputs) {
|
||
|
::memcpy(outputBwPtr + b * outputBw->stride(0) + (inputSequenceLength - 1 - i) * mNumUnits,
|
||
|
hiddenStatePtr, hiddenStateDataSize);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if (!mKeepAllOutputs) {
|
||
|
::memcpy(outputBwPtr, hiddenStatePtr, hiddenStateDataSize);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return NO_ERROR;
|
||
|
}
|
||
|
|
||
|
class CPURNNSequenceGRUCreator : public CPUBackend::Creator {
|
||
|
public:
|
||
|
virtual Execution* onCreate(const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs,
|
||
|
const MNN::Op* op, Backend* backend) const override {
|
||
|
return new CPURNNSequenceGRU(op, backend);
|
||
|
}
|
||
|
};
|
||
|
|
||
|
REGISTER_CPU_OP_CREATOR(CPURNNSequenceGRUCreator, OpType_RNNSequenceGRU);
|
||
|
|
||
|
} // namespace MNN
|