| 
									
										
										
										
											2019-04-17 10:49:11 +08:00
										 |  |  | //
 | 
					
						
							|  |  |  | //  ShapeDeconvolution.cpp
 | 
					
						
							|  |  |  | //  MNN
 | 
					
						
							|  |  |  | //
 | 
					
						
							|  |  |  | //  Created by MNN on 2019/01/10.
 | 
					
						
							|  |  |  | //  Copyright © 2018, Alibaba Group Holding Limited
 | 
					
						
							|  |  |  | //
 | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2019-12-27 22:16:57 +08:00
										 |  |  | #include "core/SizeComputer.hpp"
 | 
					
						
							| 
									
										
										
										
											2019-04-17 10:49:11 +08:00
										 |  |  | namespace MNN { | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | class DeconvolutionSizeComputer : public SizeComputer { | 
					
						
							|  |  |  | public: | 
					
						
							|  |  |  |     virtual bool onComputeSize(const MNN::Op* op, const std::vector<Tensor*>& inputs, | 
					
						
							|  |  |  |                                const std::vector<Tensor*>& outputs) const override { | 
					
						
							|  |  |  |         auto layer = op->main_as_Convolution2D()->common(); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         auto inputTensor = inputs[0]; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         int input_width   = inputTensor->width(); | 
					
						
							|  |  |  |         int input_height  = inputTensor->height(); | 
					
						
							|  |  |  |         int sH            = layer->strideY(); | 
					
						
							|  |  |  |         int sW            = layer->strideX(); | 
					
						
							|  |  |  |         int kH            = layer->kernelY(); | 
					
						
							|  |  |  |         int kW            = layer->kernelX(); | 
					
						
							|  |  |  |         int pH            = layer->padY(); | 
					
						
							|  |  |  |         int pW            = layer->padX(); | 
					
						
							|  |  |  |         int dH            = layer->dilateY(); | 
					
						
							|  |  |  |         int dW            = layer->dilateX(); | 
					
						
							| 
									
										
										
										
											2020-02-26 09:57:17 +08:00
										 |  |  |         int output_width; | 
					
						
							|  |  |  |         int output_height; | 
					
						
							| 
									
										
										
										
											2019-04-17 10:49:11 +08:00
										 |  |  | 
 | 
					
						
							|  |  |  |         if (layer->padMode() == PadMode_SAME) { // Tensorflow support
 | 
					
						
							|  |  |  |             output_width  = input_width * sW; | 
					
						
							|  |  |  |             output_height = input_height * sH; | 
					
						
							| 
									
										
										
										
											2020-02-26 09:57:17 +08:00
										 |  |  |         } else { | 
					
						
							|  |  |  |             if (nullptr != layer->pads()) { | 
					
						
							|  |  |  |                 MNN_ASSERT(layer->pads()->size() >= 4); | 
					
						
							|  |  |  |                 output_width  = (input_width - 1) * sW + dW * (kW - 1) + 1 - layer->pads()->data()[1] - layer->pads()->data()[3]; | 
					
						
							|  |  |  |                 output_height = (input_height - 1) * sH + dH * (kH - 1) + 1 - layer->pads()->data()[0] - layer->pads()->data()[2]; | 
					
						
							|  |  |  |             } else { | 
					
						
							|  |  |  |                 output_width  = (input_width - 1) * sW + dW * (kW - 1) + 1 - pW * 2; | 
					
						
							|  |  |  |                 output_height = (input_height - 1) * sH + dH * (kH - 1) + 1 - pH * 2; | 
					
						
							|  |  |  |             } | 
					
						
							| 
									
										
										
										
											2019-04-17 10:49:11 +08:00
										 |  |  |         } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         auto& outputBuffer         = outputs[0]->buffer(); | 
					
						
							| 
									
										
										
										
											2020-02-26 09:57:17 +08:00
										 |  |  |         outputBuffer.type = inputs[0]->getType(); | 
					
						
							| 
									
										
										
										
											2019-04-17 10:49:11 +08:00
										 |  |  |         outputBuffer.dimensions    = inputTensor->buffer().dimensions; | 
					
						
							|  |  |  |         outputBuffer.dim[0].extent = inputTensor->buffer().dim[0].extent; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         outputBuffer.dim[1].extent = op->main_as_Convolution2D()->common()->outputCount(); | 
					
						
							|  |  |  |         outputBuffer.dim[2].extent = output_height; | 
					
						
							|  |  |  |         outputBuffer.dim[3].extent = output_width; | 
					
						
							| 
									
										
										
										
											2019-06-17 20:10:35 +08:00
										 |  |  |         TensorUtils::getDescribe(outputs[0])->dimensionFormat = MNN_DATA_FORMAT_NC4HW4; | 
					
						
							| 
									
										
										
										
											2019-04-17 10:49:11 +08:00
										 |  |  | 
 | 
					
						
							|  |  |  |         return true; | 
					
						
							|  |  |  |     } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     virtual float onComputeFlops(const MNN::Op* op, const std::vector<Tensor*>& inputs, | 
					
						
							|  |  |  |                                  const std::vector<Tensor*>& outputs) const override { | 
					
						
							|  |  |  |         auto layer = op->main_as_Convolution2D()->common(); | 
					
						
							|  |  |  |         auto kw    = layer->kernelX(); | 
					
						
							|  |  |  |         auto kh    = layer->kernelY(); | 
					
						
							|  |  |  |         auto group = layer->group(); | 
					
						
							|  |  |  |         auto ic    = inputs[0]->channel(); | 
					
						
							|  |  |  |         auto oc    = outputs[0]->channel(); | 
					
						
							|  |  |  |         auto oSize = inputs[0]->width() * inputs[0]->height() * inputs[0]->batch(); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         return (float)oSize * kw * kh * (ic * oc / group) / FLOPS_M; | 
					
						
							|  |  |  |     } | 
					
						
							|  |  |  | }; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | REGISTER_SHAPE(DeconvolutionSizeComputer, OpType_Deconvolution); | 
					
						
							|  |  |  | REGISTER_SHAPE(DeconvolutionSizeComputer, OpType_DeconvolutionDepthwise); | 
					
						
							|  |  |  | } // namespace MNN
 |