2019-04-17 10:49:11 +08:00
|
|
|
//
|
|
|
|
// CPUPool.cpp
|
|
|
|
// MNN
|
|
|
|
//
|
|
|
|
// Created by MNN on 2018/07/15.
|
|
|
|
// Copyright © 2018, Alibaba Group Holding Limited
|
|
|
|
//
|
2021-06-11 17:17:13 +08:00
|
|
|
#include "backend/cpu/CPUBackend.hpp"
|
|
|
|
#include "core/Concurrency.h"
|
2019-12-27 22:16:57 +08:00
|
|
|
#include "backend/cpu/CPUPool.hpp"
|
2021-06-11 17:17:13 +08:00
|
|
|
#include "compute/CommonOptFunction.h"
|
2020-11-05 16:41:56 +08:00
|
|
|
#include "math/Vec.hpp"
|
2022-12-30 15:18:58 +08:00
|
|
|
#include "core/TensorUtils.hpp"
|
- dynamic computation graph (beta)
- add supports (/express)
- add tests
- add benchmarks with it (/benchmark/exprModels)
- Python
- MNN engine and tools were submitted to pip
- available on Windows/macOS/Linux
- Engine/Converter
- add supports for each op benchmarking
- refactor optimizer by separating steps
- CPU
- add supports for Conv3D, Pool3D, ELU, ReverseSequence
- fix ArgMax, Permute, Scale, BinaryOp, Slice, SliceTf
- OpenCL
- add half transform in CPU
- add broadcast supports for binary
- optimize Conv2D, Reshape, Eltwise, Gemm, etc.
- OpenGL
- add sub, real div supports for binary
- add supports for unary
- optimize Conv2D, Reshape
- Vulkan
- add max supports for eltwise
- Metal
- fix metallib missing problem
- Train/Quantization
- use express to refactor training codes
2019-09-26 21:02:07 +08:00
|
|
|
|
2020-11-05 16:41:56 +08:00
|
|
|
using Vec4 = MNN::Math::Vec<float, 4>;
|
2021-04-08 15:34:23 +08:00
|
|
|
using Vec16 = MNN::Math::Vec<int8_t, 16>;
|
2019-04-17 10:49:11 +08:00
|
|
|
|
|
|
|
namespace MNN {
|
|
|
|
|
2021-06-11 17:17:13 +08:00
|
|
|
class CPUPool : public Execution {
|
|
|
|
public:
|
|
|
|
CPUPool(Backend *b, const Pool *parameter, void* func, int bytes) : MNN::Execution(b), mParameter(parameter) {
|
|
|
|
mCompute = (decltype(mCompute))func;
|
|
|
|
mBytes = bytes;
|
|
|
|
}
|
|
|
|
virtual ~CPUPool() = default;
|
|
|
|
virtual ErrorCode onResize(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs) override {
|
|
|
|
auto layer = mParameter;
|
|
|
|
int strideWidth = layer->strideX();
|
|
|
|
int strideHeight = layer->strideY();
|
|
|
|
int padWidth = layer->padX();
|
|
|
|
int padHeight = layer->padY();
|
|
|
|
auto core = static_cast<CPUBackend*>(backend())->functions();
|
2022-12-30 15:18:58 +08:00
|
|
|
MNN_ASSERT(DataType_DT_INT8 != TensorUtils::getDescribe(inputs[0])->type);
|
2021-06-11 17:17:13 +08:00
|
|
|
|
|
|
|
// edit const if global
|
|
|
|
auto input = inputs[0];
|
|
|
|
auto output = outputs[0];
|
|
|
|
int kernelWidth = layer->kernelX();
|
|
|
|
int kernelHeight = layer->kernelY();
|
|
|
|
if (layer->isGlobal()) {
|
|
|
|
kernelWidth = input->width();
|
|
|
|
kernelHeight = input->height();
|
|
|
|
strideWidth = input->width();
|
|
|
|
strideHeight = input->height();
|
|
|
|
padWidth = 0;
|
|
|
|
padHeight = 0;
|
|
|
|
}
|
|
|
|
if (layer->padType() == PoolPadType_SAME) {
|
|
|
|
int padNeededWidth = (output->width() - 1) * strideWidth + kernelWidth - input->width();
|
|
|
|
int padNeededHeight = (output->height() - 1) * strideHeight + kernelHeight - input->height();
|
|
|
|
padWidth = padNeededWidth > 0 ? padNeededWidth / 2 : 0;
|
|
|
|
padHeight = padNeededHeight > 0 ? padNeededHeight / 2 : 0;
|
|
|
|
} else if (layer->padType() == PoolPadType_VALID) {
|
|
|
|
padWidth = padHeight = 0;
|
|
|
|
}
|
|
|
|
auto totalDepth = input->batch() * UP_DIV(input->channel(), core->pack);
|
|
|
|
auto inputPlaneStride = core->pack * input->width() * input->height();
|
|
|
|
auto outputPlaneStride = core->pack * output->width() * output->height();
|
|
|
|
int threadNumber = ((CPUBackend *)backend())->threadNumber();
|
|
|
|
auto padType = layer->padType();
|
|
|
|
auto countType = layer->countType();
|
|
|
|
if (layer->pads() != nullptr && padType == PoolPadType_CAFFE) {
|
|
|
|
padType = PoolPadType_VALID;
|
|
|
|
}
|
|
|
|
mFunction = std::make_pair(threadNumber, [=](int tId) {
|
|
|
|
for (int channel = (int)tId; channel < totalDepth; channel += threadNumber) {
|
2023-09-04 10:42:11 +08:00
|
|
|
auto inputData = input->host<uint8_t>();
|
|
|
|
auto outputData = output->host<uint8_t>();
|
2021-06-11 17:17:13 +08:00
|
|
|
// run
|
|
|
|
mCompute(inputData + channel * inputPlaneStride * mBytes, input->width(), input->height(),
|
|
|
|
outputData + outputPlaneStride * channel * mBytes, output->width(), output->height(), kernelWidth,
|
|
|
|
kernelHeight, strideWidth, strideHeight, padWidth, padHeight, padType, countType);
|
|
|
|
}
|
|
|
|
});
|
|
|
|
return NO_ERROR;
|
|
|
|
}
|
|
|
|
virtual ErrorCode onExecute(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs) override {
|
|
|
|
MNN_CONCURRENCY_BEGIN(tId, mFunction.first) {
|
|
|
|
mFunction.second((int)tId);
|
|
|
|
}
|
|
|
|
MNN_CONCURRENCY_END();
|
|
|
|
return NO_ERROR;
|
|
|
|
}
|
2019-04-17 10:49:11 +08:00
|
|
|
|
2021-06-11 17:17:13 +08:00
|
|
|
private:
|
|
|
|
const Pool *mParameter;
|
|
|
|
void(*mCompute)(const void* channelInput, int inputWidth, int inputHeight, void *channelOutput,
|
|
|
|
int outputWidth, int outputHeight, int kernelWidth, int kernelHeight, int strideWidth,
|
|
|
|
int strideHeight, int padWidth, int padHeight, int padType, int countType);
|
|
|
|
std::pair<int, std::function<void(int)> > mFunction;
|
|
|
|
int mBytes;
|
|
|
|
};
|
2019-04-17 10:49:11 +08:00
|
|
|
class CPUPoolCreator : public CPUBackend::Creator {
|
|
|
|
public:
|
|
|
|
virtual Execution *onCreate(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs,
|
|
|
|
const MNN::Op *op, Backend *backend) const override {
|
2021-06-11 17:17:13 +08:00
|
|
|
void* func = nullptr;
|
2021-04-08 15:34:23 +08:00
|
|
|
if (inputs[0]->getType() == halide_type_of<int8_t>()) {
|
2021-06-11 17:17:13 +08:00
|
|
|
if (op->main_as_Pool()->type() == PoolType_AVEPOOL) {
|
|
|
|
func = (void*)(poolingAvg<int8_t, Vec16, 4>);
|
|
|
|
} else {
|
|
|
|
func = (void*)(poolingMax<int8_t, Vec16, 4, -128>);
|
|
|
|
}
|
|
|
|
return new CPUPool(backend, op->main_as_Pool(), func, 1);
|
|
|
|
}
|
|
|
|
auto core = static_cast<CPUBackend*>(backend)->functions();
|
|
|
|
if (op->main_as_Pool()->type() == PoolType_AVEPOOL) {
|
|
|
|
func = (void*)(core->MNNPoolingAvg);
|
|
|
|
} else {
|
|
|
|
func = (void*)(core->MNNPoolingMax);
|
2021-04-08 15:34:23 +08:00
|
|
|
}
|
2021-06-11 17:17:13 +08:00
|
|
|
return new CPUPool(backend, op->main_as_Pool(), func, core->bytes);
|
2019-04-17 10:49:11 +08:00
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
REGISTER_CPU_OP_CREATOR(CPUPoolCreator, OpType_Pooling);
|
2019-12-27 22:16:57 +08:00
|
|
|
|
2019-04-17 10:49:11 +08:00
|
|
|
} // namespace MNN
|