mirror of https://github.com/alibaba/MNN.git
32 lines
981 B
C++
32 lines
981 B
C++
|
//
|
||
|
// ConvolutionWinogradBridge
|
||
|
// MNN
|
||
|
//
|
||
|
// Created by MNN on 2022/01/20.
|
||
|
// Copyright © 2018 - 2022, Alibaba Group Holding Limited
|
||
|
//
|
||
|
|
||
|
#ifndef ConvolutionWinogradBridge_hpp
|
||
|
#define ConvolutionWinogradBridge_hpp
|
||
|
|
||
|
#include "backend/cpu/CPUConvolution.hpp"
|
||
|
#include "backend/cpu/compute/ConvolutionWinogradImpl.hpp"
|
||
|
|
||
|
|
||
|
namespace MNN {
|
||
|
|
||
|
class ConvolutionWinogradBridge {
|
||
|
public:
|
||
|
static bool canUseWinograd(const Convolution2DCommon *convOp);
|
||
|
|
||
|
static WinogradConfig bestWinogradUnit(const Convolution2DCommon *convOp, const Tensor *input, const Tensor *output,
|
||
|
int threadnumber, Backend* b, const PerfConfig& denseConfig);
|
||
|
|
||
|
static ConvolutionWinogradImpl* createWinogradImpl(const Convolution2DCommon *convOp, const Tensor *input, const Tensor *output, Backend *b,
|
||
|
const float *originWeight, size_t originWeightSize, const float *bias, size_t biasSize,
|
||
|
WinogradConfig config);
|
||
|
};
|
||
|
|
||
|
} // namespace MNN
|
||
|
#endif /* ConvolutionWinogradBridge_hpp */
|