MNN/source/backend/opencl/execution/buffer/ArgMaxBufExecution.cpp

150 lines
5.9 KiB
C++
Raw Normal View History

2023-09-04 10:42:11 +08:00
//
// ArgMaxBufExecution.cpp
// MNN
//
// Created by MNN on 2023/08/11.
// Copyright © 2018, Alibaba Group Holding Limited
//
#ifndef MNN_OPENCL_BUFFER_CLOSED
#include "backend/opencl/execution/buffer/ArgMaxBufExecution.hpp"
#include "core/Macro.h"
#include "core/TensorUtils.hpp"
#include "backend/opencl/core/OpenCLBackend.hpp"
namespace MNN {
namespace OpenCL {
ArgMaxBufExecution::ArgMaxBufExecution(const std::string &compute, Backend* backend, const int axis) : Execution(backend) {
mBuildOptions.emplace(compute);
mAxis = axis;
// Do nothing
}
ErrorCode ArgMaxBufExecution::onResize(const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs) {
auto openCLBackend = static_cast<OpenCLBackend*>(backend());
auto runtime = openCLBackend->getOpenCLRuntime();
auto input = inputs[0];
auto output = outputs[0];
if(mAxis < 0){
mAxis = input->dimensions() + mAxis;
}
int inside = 1;
int outside = 1;
for(int i = 0; i < mAxis; ++i){
outside *= input->length(i);
}
for(int i = mAxis + 1; i < input->dimensions(); ++i){
inside *= input->length(i);
}
int dim = input->length(mAxis);
std::vector<int> inputShape = tensorShapeFormat(input);
std::vector<int> outputShape = tensorShapeFormat(output);
int batch = inputShape.at(0);
int inputHeight = inputShape.at(1);
int inputWidth = inputShape.at(2);
int inputChannels = inputShape.at(3);
int inputChannelBlocks = (inputChannels + 3) / 4;
int outputBatch = outputShape.at(0);
int outputHeight = outputShape.at(1);
int outputWidth = outputShape.at(2);
int outputChannels = outputShape.at(3);
int outputChannelBlocks = (outputChannels + 3) / 4;
mGlobalWorkSize = {
static_cast<uint32_t>(outputWidth),
static_cast<uint32_t>(outputHeight),
static_cast<uint32_t>(outputBatch * outputChannelBlocks)
};
if(batch * inputHeight * inputChannels == outside && 1 == inside && dim == inputWidth){
mKernel = runtime->buildKernel("argmax_buf", "argmax_width_buf", mBuildOptions);
}else if(batch * inputChannels == outside && inputWidth == inside && dim == inputHeight){
mKernel = runtime->buildKernel("argmax_buf", "argmax_height_buf", mBuildOptions);
}else if(batch == outside && inputWidth * inputHeight == inside && dim == inputChannels){
if(output->buffer().dimensions == 1){
mKernel = runtime->buildKernel("argmax_buf", "argmax_channel_dim1_buf", mBuildOptions);
}else{
mKernel = runtime->buildKernel("argmax_buf", "argmax_channel_buf", mBuildOptions);
}
mGlobalWorkSize[2] = static_cast<uint32_t>(outputBatch * outputChannels);
}else if(1 == outside && inputWidth * inputHeight * inputChannels == inside && dim == batch){
mKernel = runtime->buildKernel("argmax_buf", "argmax_batch_buf", mBuildOptions);
}
mMaxWorkGroupSize = static_cast<uint32_t>(runtime->getMaxWorkGroupSize(mKernel));
uint32_t idx = 0;
cl_int ret = CL_SUCCESS;
ret |= mKernel.setArg(idx++, mGlobalWorkSize[0]);
ret |= mKernel.setArg(idx++, mGlobalWorkSize[1]);
ret |= mKernel.setArg(idx++, mGlobalWorkSize[2]);
ret |= mKernel.setArg(idx++, openCLBuffer(input));
ret |= mKernel.setArg(idx++, openCLBuffer(output));
ret |= mKernel.setArg(idx++, inputWidth);
ret |= mKernel.setArg(idx++, inputHeight);
ret |= mKernel.setArg(idx++, inputChannels);
ret |= mKernel.setArg(idx++, batch);
ret |= mKernel.setArg(idx++, inputChannelBlocks);
ret |= mKernel.setArg(idx++, outputWidth);
ret |= mKernel.setArg(idx++, outputHeight);
ret |= mKernel.setArg(idx++, outputChannels);
ret |= mKernel.setArg(idx++, outputChannelBlocks);
MNN_CHECK_CL_SUCCESS(ret, "setArg ArgMaxBufExecution");
std::string kernelName = "gargmax_buf";
mLocalSize = localWS3DDefault(mGlobalWorkSize, mMaxWorkGroupSize, openCLBackend->getOpenCLRuntime(), kernelName, mKernel).first;
return NO_ERROR;
}
ErrorCode ArgMaxBufExecution::onExecute(const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs) {
#ifdef LOG_VERBOSE
MNN_PRINT("start ArgMaxBufExecution onExecute...");
#endif
auto mOpenCLBackend = static_cast<OpenCLBackend*>(backend());
#ifdef ENABLE_OPENCL_TIME_PROFILER
cl::Event event;
run3DKernelDefault(mKernel, mGlobalWorkSize, mLocalSize,
mOpenCLBackend->getOpenCLRuntime(), &event);
mOpenCLBackend->getOpenCLRuntime()->pushEvent({"ArgMax", event});
2023-09-04 10:42:11 +08:00
#else
run3DKernelDefault(mKernel, mGlobalWorkSize, mLocalSize,
mOpenCLBackend->getOpenCLRuntime());
#endif
#ifdef LOG_VERBOSE
MNN_PRINT("end ArgMaxBufExecution onExecute...");
#endif
return NO_ERROR;
}
class ArgMaxBufCreator : public OpenCLBackend::Creator {
public:
virtual Execution* onCreate(const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs,
const MNN::Op* op, Backend* backend) const override {
for (int i = 0; i < inputs.size(); ++i) {
TensorUtils::setTensorSupportPack(inputs[i], false);
}
for (int i = 0; i < outputs.size(); ++i) {
TensorUtils::setTensorSupportPack(outputs[i], false);
}
auto inputDimensionFromat = TensorUtils::getDescribe(inputs[0])->dimensionFormat;
if(inputDimensionFromat == MNN_DATA_FORMAT_NC4HW4){
return nullptr;
}
int axis = op->main_as_ArgMax()->axis();
if (op->type() == OpType_ArgMax) {
return new ArgMaxBufExecution("-DARGMAX", backend, axis);
}else{
return new ArgMaxBufExecution("", backend, axis);
}
}
};
OpenCLCreatorRegister<ArgMaxBufCreator> __ArgMaxBuf__(OpType_ArgMax, BUFFER);
OpenCLCreatorRegister<ArgMaxBufCreator> __ArgMinBuf__(OpType_ArgMin, BUFFER);
} // namespace OpenCL
} // namespace MNN
#endif /* MNN_OPENCL_BUFFER_CLOSED */