MNN/source/backend/opencl/execution/buffer/UnaryBufExecution.cpp

244 lines
11 KiB
C++
Raw Normal View History

2019-04-17 10:49:11 +08:00
//
// UnaryBufExecution.cpp
2019-04-17 10:49:11 +08:00
// MNN
//
// Created by MNN on 2019/02/28.
// Copyright © 2018, Alibaba Group Holding Limited
//
#ifndef MNN_OPENCL_BUFFER_CLOSED
#include "backend/opencl/execution/buffer/UnaryBufExecution.hpp"
2019-12-27 22:16:57 +08:00
#include "core/Macro.h"
#include "core/TensorUtils.hpp"
#include "backend/opencl/core/OpenCLBackend.hpp"
2019-04-17 10:49:11 +08:00
namespace MNN {
namespace OpenCL {
UnaryBufExecution::UnaryBufExecution(const std::string& compute, Backend* backend) : Execution(backend) {
2023-07-31 14:24:48 +08:00
mBuildOptions.emplace(" -DOPERATOR=" + compute);
2019-04-17 10:49:11 +08:00
}
ErrorCode UnaryBufExecution::onResize(const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs) {
2019-04-17 10:49:11 +08:00
Tensor* input = inputs[0];
Tensor* output = outputs[0];
auto openCLBackend = static_cast<OpenCLBackend*>(backend());
2023-07-31 14:24:48 +08:00
auto runtime = openCLBackend->getOpenCLRuntime();
#ifdef MNN_SUPPORT_INTEL_SUBGROUP
if (runtime->isSupportedIntelSubgroup()) {
return SubgrouponResize(inputs, outputs);
}
#endif /* MNN_SUPPORT_INTEL_SUBGROUP */
mKernel = runtime->buildKernel("unary_buf", "unary_buf", mBuildOptions);
mMaxWorkGroupSize = static_cast<uint32_t>(runtime->getMaxWorkGroupSize(mKernel));
2019-04-17 10:49:11 +08:00
std::vector<int> inputShape = tensorShapeFormat(input);
std::vector<int> outputShape = tensorShapeFormat(output);
2019-12-27 22:16:57 +08:00
int batch = outputShape.at(0);
int outputHeight = outputShape.at(1);
int outputWidth = outputShape.at(2);
int channels = outputShape.at(3);
2019-04-17 10:49:11 +08:00
2019-12-27 22:16:57 +08:00
int channelBlocks = (channels + 3) / 4;
2019-04-17 10:49:11 +08:00
2019-12-27 22:16:57 +08:00
mGlobalWorkSize = {
static_cast<uint32_t>(channelBlocks),
static_cast<uint32_t>(outputWidth),
static_cast<uint32_t>(batch * outputHeight),
};
2019-04-17 10:49:11 +08:00
2019-12-27 22:16:57 +08:00
uint32_t idx = 0;
2023-07-31 14:24:48 +08:00
cl_int ret = CL_SUCCESS;
ret |= mKernel.setArg(idx++, mGlobalWorkSize[0]);
ret |= mKernel.setArg(idx++, mGlobalWorkSize[1]);
ret |= mKernel.setArg(idx++, mGlobalWorkSize[2]);
ret |= mKernel.setArg(idx++, openCLBuffer(input));
ret |= mKernel.setArg(idx++, openCLBuffer(output));
ret |= mKernel.setArg(idx++, outputHeight);
MNN_CHECK_CL_SUCCESS(ret, "setArg UnaryBufExecution");
std::string kernelName = "unary_buf";
mLocalSize = localWS3DDefault(mGlobalWorkSize, mMaxWorkGroupSize, openCLBackend->getOpenCLRuntime(), kernelName, mKernel).first;
return NO_ERROR;
}
#ifdef MNN_SUPPORT_INTEL_SUBGROUP
ErrorCode UnaryBufExecution::SubgrouponResize(const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs) {
Tensor* input = inputs[0];
Tensor* output = outputs[0];
auto openCLBackend = static_cast<OpenCLBackend*>(backend());
auto runtime = openCLBackend->getOpenCLRuntime();
std::vector<int> inputShape = tensorShapeFormat(input);
std::vector<int> outputShape = tensorShapeFormat(output);
int batch = outputShape.at(0);
int outputHeight = outputShape.at(1);
int outputWidth = outputShape.at(2);
int channels = outputShape.at(3);
auto inputpad = TensorUtils::getDescribe(input)->mPads;
auto outputpad = TensorUtils::getDescribe(output)->mPads;
int input_c_pack = TensorUtils::getTensorChannelPack(input);
int output_c_pack = TensorUtils::getTensorChannelPack(output);
std::string KernelName = "unary_buf_c" + std::to_string(input_c_pack) + "_c" + std::to_string(output_c_pack);
mKernel = runtime->buildKernel("unary_subgroup_buf", KernelName, mBuildOptions);
mMaxWorkGroupSize = static_cast<uint32_t>(runtime->getMaxWorkGroupSize(mKernel));
int channelBlocks = (channels + 3) / 4;
mGlobalWorkSize = {
static_cast<uint32_t>(channelBlocks),
static_cast<uint32_t>(outputWidth),
static_cast<uint32_t>(batch * outputHeight),
};
if (runtime->isSupportedIntelSubgroup() && input_c_pack == 16) {
channelBlocks = UP_DIV(channels, 16);
mGlobalWorkSize[0] = ROUND_UP(channels, 16);
mGlobalWorkSize[1] = UP_DIV(outputWidth, 4);
}
uint32_t idx = 0;
cl_int ret = CL_SUCCESS;
ret |= mKernel.setArg(idx++, mGlobalWorkSize[0]);
ret |= mKernel.setArg(idx++, mGlobalWorkSize[1]);
ret |= mKernel.setArg(idx++, mGlobalWorkSize[2]);
ret |= mKernel.setArg(idx++, openCLBuffer(input));
ret |= mKernel.setArg(idx++, openCLBuffer(output));
ret |= mKernel.setArg(idx++, outputWidth);
ret |= mKernel.setArg(idx++, outputHeight);
ret |= mKernel.setArg(idx++, channelBlocks);
ret |= mKernel.setArg(idx++, static_cast<uint32_t>(inputpad.left));
ret |= mKernel.setArg(idx++, static_cast<uint32_t>(inputpad.right));
ret |= mKernel.setArg(idx++, static_cast<uint32_t>(outputpad.left));
ret |= mKernel.setArg(idx++, static_cast<uint32_t>(outputpad.right));
MNN_CHECK_CL_SUCCESS(ret, "setArg UnaryBufExecution SubGroup");
2019-04-17 10:49:11 +08:00
std::string kernelName = "unary_buf";
2023-07-31 14:24:48 +08:00
if (runtime->isSupportedIntelSubgroup() && input_c_pack == 16) {
mLocalSize = {16, 1, 1};
} else {
mLocalSize = localWS3DDefault(mGlobalWorkSize, mMaxWorkGroupSize, openCLBackend->getOpenCLRuntime(), kernelName, mKernel).first;
}
2019-12-27 22:16:57 +08:00
return NO_ERROR;
}
2023-07-31 14:24:48 +08:00
#endif /* MNN_SUPPORT_INTEL_SUBGROUP */
2019-12-27 22:16:57 +08:00
ErrorCode UnaryBufExecution::onExecute(const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs) {
2019-12-27 22:16:57 +08:00
#ifdef LOG_VERBOSE
MNN_PRINT("start UnaryBufExecution onExecute...");
2019-12-27 22:16:57 +08:00
#endif
auto mOpenCLBackend = static_cast<OpenCLBackend*>(backend());
#ifdef ENABLE_OPENCL_TIME_PROFILER
cl::Event event;
run3DKernelDefault(mKernel, mGlobalWorkSize, mLocalSize,
mOpenCLBackend->getOpenCLRuntime(), &event);
mOpenCLBackend->getOpenCLRuntime()->pushEvent({"Unary", event});
#else
run3DKernelDefault(mKernel, mGlobalWorkSize, mLocalSize,
mOpenCLBackend->getOpenCLRuntime());
#endif
2019-04-17 10:49:11 +08:00
#ifdef LOG_VERBOSE
MNN_PRINT("end UnaryBufExecution onExecute...");
2019-04-17 10:49:11 +08:00
#endif
return NO_ERROR;
}
2019-12-27 22:16:57 +08:00
class UnaryBufCreator : public OpenCLBackend::Creator {
2019-04-17 10:49:11 +08:00
public:
virtual Execution* onCreate(const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs,
const MNN::Op* op, Backend* backend) const override {
2023-07-31 14:24:48 +08:00
for (int i = 0; i < inputs.size(); ++i) {
int channel = inputs[i]->channel();
if (channel >= 16) {
TensorUtils::setTensorChannelPack(inputs[i], 16);
}
}
2019-04-17 10:49:11 +08:00
if (op->type() == OpType_UnaryOp) {
switch (op->main_as_UnaryOp()->opType()) {
2021-04-08 15:34:23 +08:00
case UnaryOpOperation_ABS:
return new UnaryBufExecution("fabs(convert_float4(in))", backend);
case UnaryOpOperation_SQUARE:
return new UnaryBufExecution("in*in", backend);
2019-04-17 10:49:11 +08:00
case UnaryOpOperation_RSQRT:
return new UnaryBufExecution("rsqrt(convert_float4(in))", backend);
case UnaryOpOperation_NEG:
return new UnaryBufExecution("-(in)", backend);
2021-04-08 15:34:23 +08:00
case UnaryOpOperation_EXP:
return new UnaryBufExecution("exp(convert_float4(in))", backend);
case UnaryOpOperation_COS:
return new UnaryBufExecution("cos(convert_float4(in))", backend);
case UnaryOpOperation_SIN:
return new UnaryBufExecution("sin(convert_float4(in))", backend);
case UnaryOpOperation_TAN:
return new UnaryBufExecution("tan(convert_float4(in))", backend);
2021-04-08 15:34:23 +08:00
case UnaryOpOperation_ATAN:
return new UnaryBufExecution("atan(convert_float4(in))", backend);
case UnaryOpOperation_SQRT:
return new UnaryBufExecution("sqrt(convert_float4(in))", backend);
case UnaryOpOperation_CEIL:
return new UnaryBufExecution("ceil(convert_float4(in))", backend);
2021-04-08 15:34:23 +08:00
case UnaryOpOperation_RECIPROCAL:
return new UnaryBufExecution("native_recip(convert_float4(in))", backend);
case UnaryOpOperation_LOG1P:
return new UnaryBufExecution("log1p(convert_float4(in))", backend);
2021-04-08 15:34:23 +08:00
case UnaryOpOperation_LOG:
return new UnaryBufExecution("native_log(convert_float4(in)>(float4)(0.0000001)?convert_float4(in):(float4)(0.0000001))", backend);
case UnaryOpOperation_FLOOR:
return new UnaryBufExecution("floor(convert_float4(in))", backend);
2021-04-08 15:34:23 +08:00
case UnaryOpOperation_BNLL:
return new UnaryBufExecution("in>(FLOAT4)((FLOAT)0)?(in+native_log(exp(convert_float4(-(in)))+(float4)(1.0))):(native_log(exp(convert_float4(in))+(float4)(1.0)))", backend);
case UnaryOpOperation_ACOSH:
return new UnaryBufExecution("acosh(convert_float4(in))", backend);
case UnaryOpOperation_SINH:
return new UnaryBufExecution("sinh(convert_float4(in))", backend);
case UnaryOpOperation_ASINH:
return new UnaryBufExecution("asinh(convert_float4(in))", backend);
case UnaryOpOperation_ATANH:
return new UnaryBufExecution("atanh(convert_float4(in))", backend);
case UnaryOpOperation_SIGN:
return new UnaryBufExecution("sign(convert_float4(in))", backend);
case UnaryOpOperation_ROUND:
return new UnaryBufExecution("round(convert_float4(in))", backend);
2021-04-08 15:34:23 +08:00
case UnaryOpOperation_COSH:
return new UnaryBufExecution("cosh(convert_float4(in))", backend);
case UnaryOpOperation_ERF:
return new UnaryBufExecution("erf(convert_float4(in))", backend);
case UnaryOpOperation_ERFC:
return new UnaryBufExecution("erfc(convert_float4(in))", backend);
case UnaryOpOperation_EXPM1:
return new UnaryBufExecution("expm1(convert_float4(in))", backend);
2020-11-05 16:41:56 +08:00
case UnaryOpOperation_SIGMOID:
return new UnaryBufExecution("native_recip((float4)1+native_exp(convert_float4(-in)))", backend);
2020-11-05 16:41:56 +08:00
case UnaryOpOperation_TANH:
return new UnaryBufExecution("tanh(convert_float4(in))", backend);
2021-04-08 15:34:23 +08:00
case UnaryOpOperation_HARDSWISH:
2023-02-28 10:41:24 +08:00
return new UnaryBufExecution("convert_float4(in)>(float4)(-3.0f)?(convert_float4(in)<(float4)(3.0f)?((convert_float4(in)*(convert_float4(in)+(float4)3.0f))/(float4)6.0f):convert_float4(in)):(float4)(0.0f)", backend);
case UnaryOpOperation_GELU:
return new UnaryBufExecution("gelu(convert_float4(in))", backend);
default:
2019-04-17 10:49:11 +08:00
break;
}
return nullptr;
}
if (op->type() == OpType_Sigmoid) {
2021-04-08 15:34:23 +08:00
return new UnaryBufExecution("native_recip((float4)(1.0)+native_exp(convert_float4(-(in))))", backend);
2019-04-17 10:49:11 +08:00
}
if (op->type() == OpType_TanH) {
return new UnaryBufExecution("tanh(convert_float4(in))", backend);
2019-04-17 10:49:11 +08:00
}
return nullptr;
}
};
OpenCLCreatorRegister<UnaryBufCreator> __UnaryBuf__(OpType_UnaryOp, BUFFER);
OpenCLCreatorRegister<UnaryBufCreator> __SigmoidBuf__(OpType_Sigmoid, BUFFER);
OpenCLCreatorRegister<UnaryBufCreator> __TanhBuf__(OpType_TanH, BUFFER);
2019-04-17 10:49:11 +08:00
} // namespace OpenCL
} // namespace MNN
#endif /* MNN_OPENCL_BUFFER_CLOSED */