mirror of https://github.com/alibaba/MNN.git
159 lines
6.3 KiB
C++
159 lines
6.3 KiB
C++
|
//
|
||
|
// GeometryStridedSlice.cpp
|
||
|
// MNN
|
||
|
//
|
||
|
// Created by MNN on 2020/04/17.
|
||
|
// Copyright © 2018, Alibaba Group Holding Limited
|
||
|
//
|
||
|
|
||
|
#include "geometry/GeometryComputer.hpp"
|
||
|
#include "core/OpCommonUtils.hpp"
|
||
|
namespace MNN {
|
||
|
class GeometryStridedSlice : public GeometryComputer {
|
||
|
public:
|
||
|
virtual bool onCompute(const Op* op, const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs,
|
||
|
Context& context, CommandBuffer& res) const override {
|
||
|
Tensor* input = inputs[0];
|
||
|
// input haven't realized
|
||
|
auto output = outputs[0];
|
||
|
auto outputDes = TensorUtils::getDescribe(output);
|
||
|
outputDes->memoryType = Tensor::InsideDescribe::MEMORY_VIRTUAL;
|
||
|
|
||
|
auto parameter = op->main_as_StridedSliceParam();
|
||
|
Tensor* begin = inputs[1];
|
||
|
Tensor* end = inputs[2];
|
||
|
Tensor* strided = inputs[3];
|
||
|
int32_t inputShape[MNN_MAX_TENSOR_DIM];
|
||
|
int32_t inputStride[MNN_MAX_TENSOR_DIM];
|
||
|
{
|
||
|
int stride = 1;
|
||
|
for (int i = input->buffer().dimensions - 1; i >= 0; --i) {
|
||
|
inputShape[i] = input->buffer().dim[i].extent;
|
||
|
inputStride[i] = stride;
|
||
|
stride *= inputShape[i];
|
||
|
}
|
||
|
}
|
||
|
int stridedSliceDimension = begin->buffer().dim[0].extent;
|
||
|
int32_t beginShape[MNN_MAX_TENSOR_DIM];
|
||
|
int32_t endShape[MNN_MAX_TENSOR_DIM];
|
||
|
int32_t stridedShape[MNN_MAX_TENSOR_DIM];
|
||
|
std::vector<int32_t> outputShape;
|
||
|
|
||
|
int32_t beginMask[MNN_MAX_TENSOR_DIM];
|
||
|
for (int i = 0; i < stridedSliceDimension; i++) {
|
||
|
beginMask[i] = parameter->beginMask() & (1 << i);
|
||
|
}
|
||
|
int32_t endMask[MNN_MAX_TENSOR_DIM];
|
||
|
for (int i = 0; i < stridedSliceDimension; i++) {
|
||
|
endMask[i] = parameter->endMask() & (1 << i);
|
||
|
}
|
||
|
int32_t shrinkAxisMask[MNN_MAX_TENSOR_DIM];
|
||
|
for (int i = 0; i < stridedSliceDimension; i++) {
|
||
|
shrinkAxisMask[i] = parameter->shrinkAxisMask() & (1 << i);
|
||
|
}
|
||
|
auto beginAndEndShapeLimit = [](int shape, int dimSize, bool exclusive) -> int {
|
||
|
int maxShape = dimSize - 1, minShape = -dimSize;
|
||
|
if (exclusive) {
|
||
|
++maxShape;
|
||
|
--minShape;
|
||
|
}
|
||
|
shape = (shape > maxShape ? maxShape : shape);
|
||
|
shape = (shape < minShape ? minShape : shape);
|
||
|
if (shape < 0) {
|
||
|
shape += dimSize;
|
||
|
}
|
||
|
return shape;
|
||
|
};
|
||
|
|
||
|
for (int i = 0; i < stridedSliceDimension; i++) {
|
||
|
if (beginMask[i] > 0) {
|
||
|
beginShape[i] = 0;
|
||
|
} else {
|
||
|
beginShape[i] = std::min(inputShape[i], begin->host<int32_t>()[i]);
|
||
|
}
|
||
|
if (beginShape[i] < 0) {
|
||
|
beginShape[i] += input->buffer().dim[i].extent;
|
||
|
}
|
||
|
if (endMask[i] > 0) {
|
||
|
endShape[i] = inputShape[i];
|
||
|
} else {
|
||
|
endShape[i] = beginAndEndShapeLimit(end->host<int32_t>()[i], inputShape[i], true);
|
||
|
}
|
||
|
// FIXME: Currently we don't support zero shape, use dimension 0 instead
|
||
|
if (beginShape[i] == inputShape[i]) {
|
||
|
return true;
|
||
|
}
|
||
|
stridedShape[i] = shrinkAxisMask[i] > 0 ? 1 : strided->host<int32_t>()[i];
|
||
|
|
||
|
if (shrinkAxisMask[i] == 0) {
|
||
|
if (stridedShape[i] > 0) {
|
||
|
int size = (endShape[i] - beginShape[i] - 1) / stridedShape[i] + 1;
|
||
|
outputShape.push_back(size);
|
||
|
} else {
|
||
|
int size = (endShape[i] - beginShape[i] + 1) / stridedShape[i] + 1;
|
||
|
outputShape.push_back(size);
|
||
|
}
|
||
|
} else {
|
||
|
outputShape.push_back(1);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
int outputDimensionsWithoutRemain = (int)outputShape.size();
|
||
|
int dimensionRemained = input->buffer().dimensions - stridedSliceDimension;
|
||
|
for (int i = 0; i < dimensionRemained; i++) {
|
||
|
outputShape.push_back(input->buffer().dim[outputDimensionsWithoutRemain + i].extent);
|
||
|
stridedShape[stridedSliceDimension + i] = 1;
|
||
|
beginShape[stridedSliceDimension + i] = 0;
|
||
|
}
|
||
|
int remainSize = 1;
|
||
|
std::vector<int> remainDims;
|
||
|
for (int i = 0; i < (int)outputShape.size() - 3; ++i) {
|
||
|
remainSize *= outputShape[i];
|
||
|
remainDims.emplace_back(outputShape[i]);
|
||
|
}
|
||
|
outputDes->regions.resize(remainSize);
|
||
|
int regionSize = outputShape.size() < 3 ? outputShape.size() : 3;
|
||
|
std::vector<int32_t> mod(remainDims.size());
|
||
|
OpCommonUtils::computeStride(mod.data(), remainDims.data(), (int)remainDims.size());
|
||
|
int outputStrideTotal = 1;
|
||
|
int basicInputOffset = 0;
|
||
|
for (int i = 0; i < regionSize; ++i) {
|
||
|
int pos = outputShape.size() - i - 1;
|
||
|
auto len = outputShape[pos];
|
||
|
basicInputOffset += inputStride[pos] * beginShape[pos];
|
||
|
outputStrideTotal *= len;
|
||
|
}
|
||
|
std::vector<int> coordinates(remainSize);
|
||
|
for (int r = 0; r < remainSize; ++r) {
|
||
|
OpCommonUtils::unravelIndexHelper(coordinates, mod, mod.size(), r);
|
||
|
int inputOffset = basicInputOffset;
|
||
|
for (int i = 0; i < remainDims.size(); ++i) {
|
||
|
inputOffset += coordinates[i] * inputStride[i] * stridedShape[i];
|
||
|
}
|
||
|
|
||
|
auto& reg = outputDes->regions[r];
|
||
|
reg.dst.offset = r * outputStrideTotal;
|
||
|
reg.src.offset = inputOffset;
|
||
|
reg.origin = input;
|
||
|
for (int i = 0; i < regionSize; ++i) {
|
||
|
int pos = outputShape.size() - i - 1;
|
||
|
reg.size[3 - i - 1] = outputShape[pos];
|
||
|
reg.src.stride[3 - i - 1] = inputStride[pos] * stridedShape[pos];
|
||
|
}
|
||
|
reg.dst.stride[0] = reg.size[1] * reg.size[2];
|
||
|
reg.dst.stride[1] = reg.size[2];
|
||
|
reg.dst.stride[2] = 1;
|
||
|
}
|
||
|
return true;
|
||
|
}
|
||
|
};
|
||
|
|
||
|
static void _create() {
|
||
|
std::shared_ptr<GeometryComputer> comp(new GeometryStridedSlice);
|
||
|
GeometryComputer::registerGeometryComputer(comp, {OpType_StridedSlice});
|
||
|
}
|
||
|
|
||
|
REGISTER_GEOMETRY(GeometryStridedSlice, _create);
|
||
|
|
||
|
} // namespace MNN
|