MNN/source/backend/metal/MetalSoftmax.mm

95 lines
3.8 KiB
Plaintext
Raw Normal View History

2019-04-17 10:49:11 +08:00
//
// MetalSoftmax.mm
// MNN
//
// Created by MNN on 2019/01/30.
// Copyright © 2018, Alibaba Group Holding Limited
//
2019-12-27 22:16:57 +08:00
#import "backend/metal/MNNMetalContext.h"
#if MNN_METAL_ENABLED
2019-12-27 22:16:57 +08:00
#import "backend/metal/MetalSoftmax.hpp"
#import "core/Macro.h"
#import "backend/metal/MetalBackend.hpp"
#import "core/TensorUtils.hpp"
2019-04-17 10:49:11 +08:00
namespace MNN {
MetalSoftmax::MetalSoftmax(Backend *backend, int32_t axis) : Execution(backend), mAxis(axis) {
// nothing to do
}
ErrorCode MetalSoftmax::onExecute(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs) {
auto backend = static_cast<MetalBackend *>(this->backend());
auto context = (__bridge MNNMetalContext *)backend->context();
auto input = inputs[0], output = outputs[0];
- build: - unify schema building in core and converter; - add more build script for android; - add linux build script for python; - ops impl: - add floor mod support in binary; - use eltwise impl in add/max/sub/mul binary for optimization; - remove fake double support in cast; - fix 5d support for concat; - add adjX and adjY support for batch matmul; - optimize conv2d back prop filter; - add pad mode support for conv3d; - fix bug in conv2d & conv depthwise with very small feature map; - optimize binary without broacast; - add data types support for gather; - add gather ND support; - use uint8 data type in gather v2; - add transpose support for matmul; - add matrix band part; - add dim != 4 support for padding, reshape & tensor convert; - add pad type support for pool3d; - make ops based on TensorFlow Lite quantization optional; - add all & any support for reduction; - use type in parameter as output type in reduction; - add int support for unary; - add variable weight support for conv2d; - fix conv2d depthwise weights initialization; - fix type support for transpose; - fix grad outputs count for reduce grad and reshape grad; - fix priorbox & detection output; - fix metal softmax error; - python: - add runSessionWithCallBackInfo interface; - add max nodes limit (1400) for visualization tool; - fix save error in python3; - align default dim; - convert: - add extra design for optimization; - add more post converting optimizers; - add caffe v1 weights blob support; - add cast, unary, conv transpose support for onnx model; - optimize batchnorm, conv with variable weights, prelu, reshape, slice, upsample for onnx model; - add cos/sin/atan/tan support for unary for tensorflow model; - add any/all support for reduction for tensorflow model; - add elu, conv3d, pool3d support for tensorflow model; - optimize argmax, batchnorm, concat, batch to space, conv with variable weights, prelu, slice for tensorflow model; - others: - fix size computer lock; - fix thread pool deadlock; - add express & parameters in express; - rewrite blitter chooser without static map; - add tests for expr;
2019-10-29 13:37:26 +08:00
auto dimensions = input->buffer().dimensions;
auto realAxis = mAxis < 0 ? dimensions + mAxis : mAxis;
auto channelPacked = TensorUtils::getDescribe(input)->dimensionFormat == MNN_DATA_FORMAT_NC4HW4; // even dims != 4
auto reorder = realAxis == 1 && channelPacked;
2019-04-17 10:49:11 +08:00
// shape
- build: - unify schema building in core and converter; - add more build script for android; - add linux build script for python; - ops impl: - add floor mod support in binary; - use eltwise impl in add/max/sub/mul binary for optimization; - remove fake double support in cast; - fix 5d support for concat; - add adjX and adjY support for batch matmul; - optimize conv2d back prop filter; - add pad mode support for conv3d; - fix bug in conv2d & conv depthwise with very small feature map; - optimize binary without broacast; - add data types support for gather; - add gather ND support; - use uint8 data type in gather v2; - add transpose support for matmul; - add matrix band part; - add dim != 4 support for padding, reshape & tensor convert; - add pad type support for pool3d; - make ops based on TensorFlow Lite quantization optional; - add all & any support for reduction; - use type in parameter as output type in reduction; - add int support for unary; - add variable weight support for conv2d; - fix conv2d depthwise weights initialization; - fix type support for transpose; - fix grad outputs count for reduce grad and reshape grad; - fix priorbox & detection output; - fix metal softmax error; - python: - add runSessionWithCallBackInfo interface; - add max nodes limit (1400) for visualization tool; - fix save error in python3; - align default dim; - convert: - add extra design for optimization; - add more post converting optimizers; - add caffe v1 weights blob support; - add cast, unary, conv transpose support for onnx model; - optimize batchnorm, conv with variable weights, prelu, reshape, slice, upsample for onnx model; - add cos/sin/atan/tan support for unary for tensorflow model; - add any/all support for reduction for tensorflow model; - add elu, conv3d, pool3d support for tensorflow model; - optimize argmax, batchnorm, concat, batch to space, conv with variable weights, prelu, slice for tensorflow model; - others: - fix size computer lock; - fix thread pool deadlock; - add express & parameters in express; - rewrite blitter chooser without static map; - add tests for expr;
2019-10-29 13:37:26 +08:00
auto inside = 1, flat = input->length(realAxis), axis = flat, outside = 1;
for (int i = 0; i < realAxis; i++) {
auto length = input->length(i);
- build: - unify schema building in core and converter; - add more build script for android; - add linux build script for python; - ops impl: - add floor mod support in binary; - use eltwise impl in add/max/sub/mul binary for optimization; - remove fake double support in cast; - fix 5d support for concat; - add adjX and adjY support for batch matmul; - optimize conv2d back prop filter; - add pad mode support for conv3d; - fix bug in conv2d & conv depthwise with very small feature map; - optimize binary without broacast; - add data types support for gather; - add gather ND support; - use uint8 data type in gather v2; - add transpose support for matmul; - add matrix band part; - add dim != 4 support for padding, reshape & tensor convert; - add pad type support for pool3d; - make ops based on TensorFlow Lite quantization optional; - add all & any support for reduction; - use type in parameter as output type in reduction; - add int support for unary; - add variable weight support for conv2d; - fix conv2d depthwise weights initialization; - fix type support for transpose; - fix grad outputs count for reduce grad and reshape grad; - fix priorbox & detection output; - fix metal softmax error; - python: - add runSessionWithCallBackInfo interface; - add max nodes limit (1400) for visualization tool; - fix save error in python3; - align default dim; - convert: - add extra design for optimization; - add more post converting optimizers; - add caffe v1 weights blob support; - add cast, unary, conv transpose support for onnx model; - optimize batchnorm, conv with variable weights, prelu, reshape, slice, upsample for onnx model; - add cos/sin/atan/tan support for unary for tensorflow model; - add any/all support for reduction for tensorflow model; - add elu, conv3d, pool3d support for tensorflow model; - optimize argmax, batchnorm, concat, batch to space, conv with variable weights, prelu, slice for tensorflow model; - others: - fix size computer lock; - fix thread pool deadlock; - add express & parameters in express; - rewrite blitter chooser without static map; - add tests for expr;
2019-10-29 13:37:26 +08:00
if (1 == i && channelPacked) {
length = UP_DIV(length, 4);
}
outside *= length;
2019-04-17 10:49:11 +08:00
}
- build: - unify schema building in core and converter; - add more build script for android; - add linux build script for python; - ops impl: - add floor mod support in binary; - use eltwise impl in add/max/sub/mul binary for optimization; - remove fake double support in cast; - fix 5d support for concat; - add adjX and adjY support for batch matmul; - optimize conv2d back prop filter; - add pad mode support for conv3d; - fix bug in conv2d & conv depthwise with very small feature map; - optimize binary without broacast; - add data types support for gather; - add gather ND support; - use uint8 data type in gather v2; - add transpose support for matmul; - add matrix band part; - add dim != 4 support for padding, reshape & tensor convert; - add pad type support for pool3d; - make ops based on TensorFlow Lite quantization optional; - add all & any support for reduction; - use type in parameter as output type in reduction; - add int support for unary; - add variable weight support for conv2d; - fix conv2d depthwise weights initialization; - fix type support for transpose; - fix grad outputs count for reduce grad and reshape grad; - fix priorbox & detection output; - fix metal softmax error; - python: - add runSessionWithCallBackInfo interface; - add max nodes limit (1400) for visualization tool; - fix save error in python3; - align default dim; - convert: - add extra design for optimization; - add more post converting optimizers; - add caffe v1 weights blob support; - add cast, unary, conv transpose support for onnx model; - optimize batchnorm, conv with variable weights, prelu, reshape, slice, upsample for onnx model; - add cos/sin/atan/tan support for unary for tensorflow model; - add any/all support for reduction for tensorflow model; - add elu, conv3d, pool3d support for tensorflow model; - optimize argmax, batchnorm, concat, batch to space, conv with variable weights, prelu, slice for tensorflow model; - others: - fix size computer lock; - fix thread pool deadlock; - add express & parameters in express; - rewrite blitter chooser without static map; - add tests for expr;
2019-10-29 13:37:26 +08:00
for (int i = realAxis + 1; i < input->dimensions(); i++) {
auto length = input->length(i);
- build: - unify schema building in core and converter; - add more build script for android; - add linux build script for python; - ops impl: - add floor mod support in binary; - use eltwise impl in add/max/sub/mul binary for optimization; - remove fake double support in cast; - fix 5d support for concat; - add adjX and adjY support for batch matmul; - optimize conv2d back prop filter; - add pad mode support for conv3d; - fix bug in conv2d & conv depthwise with very small feature map; - optimize binary without broacast; - add data types support for gather; - add gather ND support; - use uint8 data type in gather v2; - add transpose support for matmul; - add matrix band part; - add dim != 4 support for padding, reshape & tensor convert; - add pad type support for pool3d; - make ops based on TensorFlow Lite quantization optional; - add all & any support for reduction; - use type in parameter as output type in reduction; - add int support for unary; - add variable weight support for conv2d; - fix conv2d depthwise weights initialization; - fix type support for transpose; - fix grad outputs count for reduce grad and reshape grad; - fix priorbox & detection output; - fix metal softmax error; - python: - add runSessionWithCallBackInfo interface; - add max nodes limit (1400) for visualization tool; - fix save error in python3; - align default dim; - convert: - add extra design for optimization; - add more post converting optimizers; - add caffe v1 weights blob support; - add cast, unary, conv transpose support for onnx model; - optimize batchnorm, conv with variable weights, prelu, reshape, slice, upsample for onnx model; - add cos/sin/atan/tan support for unary for tensorflow model; - add any/all support for reduction for tensorflow model; - add elu, conv3d, pool3d support for tensorflow model; - optimize argmax, batchnorm, concat, batch to space, conv with variable weights, prelu, slice for tensorflow model; - others: - fix size computer lock; - fix thread pool deadlock; - add express & parameters in express; - rewrite blitter chooser without static map; - add tests for expr;
2019-10-29 13:37:26 +08:00
if (1 == i && channelPacked) {
length = UP_DIV(length, 4);
}
inside *= length;
2019-04-17 10:49:11 +08:00
}
if (reorder) {
axis = UP_DIV(axis, 4);
}
auto shape = [context newDeviceBuffer:4 * sizeof(int) access:CPUWriteOnly];
((int *)shape.contents)[0] = inside;
((int *)shape.contents)[1] = axis;
((int *)shape.contents)[2] = outside;
((int *)shape.contents)[3] = flat;
2019-04-17 10:49:11 +08:00
auto multiplex = axis >= 128;
// encode
auto tf = input->getDimensionType() == Tensor::TENSORFLOW;
auto kernel = multiplex ? (tf ? @"softmax_m_tf" : reorder ? @"softmax_m_on_reorder" : @"softmax_m_off_reorder")
: (tf ? @"softmax_tf" : reorder ? @"softmax_on_reorder" : @"softmax_off_reorder");
2019-04-17 10:49:11 +08:00
auto encoder = [context encoder];
auto bandwidth = [context load:kernel encoder:encoder];
[encoder setBuffer:(__bridge id<MTLBuffer>)(void *)input->deviceId() offset:0 atIndex:0];
[encoder setBuffer:(__bridge id<MTLBuffer>)(void *)output->deviceId() offset:0 atIndex:1];
[encoder setBuffer:shape offset:0 atIndex:2];
2019-04-17 10:49:11 +08:00
if (multiplex) {
auto unit = (!tf && reorder) ? sizeof(float) : 4 * sizeof(float);
2019-04-17 10:49:11 +08:00
auto threads = MIN(pow(log2(UP_DIV(axis, 64)), 2), bandwidth.threadExecutionWidth);
if (unit * bandwidth.maxThreadsPerThreadgroup > context.maxThreadgroupMemoryLength) {
bandwidth.maxThreadsPerThreadgroup /= context.maxThreadgroupMemoryLength / unit;
}
bandwidth.zAxisProtected = YES;
[encoder setThreadgroupMemoryLength:unit * bandwidth.maxThreadsPerThreadgroup atIndex:0];
[context dispatchEncoder:encoder
threads:{(NSUInteger)threads, (NSUInteger)inside, (NSUInteger)outside}
2019-04-17 10:49:11 +08:00
bandwidth:bandwidth];
} else {
[context dispatchEncoder:encoder threads:{(NSUInteger)inside, (NSUInteger)outside, 1} bandwidth:bandwidth];
2019-04-17 10:49:11 +08:00
}
[encoder endEncoding];
MNN_PRINT_ENCODER(context, encoder);
return NO_ERROR;
}
class MetalSoftmaxCreator : public MetalBackend::Creator {
public:
virtual Execution *onCreate(const std::vector<Tensor *> &inputs, const MNN::Op *op, Backend *backend) const {
2020-03-20 16:14:39 +08:00
auto softmax = op->main_as_Axis();
return new MetalSoftmax(backend, softmax->axis());
2019-04-17 10:49:11 +08:00
}
};
REGISTER_METAL_OP_CREATOR(MetalSoftmaxCreator, OpType_Softmax);
2019-04-17 10:49:11 +08:00
} // namespace MNN
#endif /* MNN_METAL_ENABLED */