MNN/express/Executor.cpp

759 lines
24 KiB
C++
Raw Normal View History

2019-12-27 22:16:57 +08:00
//
// Executor.cpp
// MNN
//
// Created by MNN on 2019/07/26.
// Copyright © 2018, Alibaba Group Holding Limited
//
2020-07-04 01:21:30 +08:00
#include <unordered_set>
2019-12-27 22:16:57 +08:00
#include <MNN/expr/Executor.hpp>
#include "core/Session.hpp"
#include "core/TensorUtils.hpp"
#include "Utils.hpp"
#include <MNN/AutoTime.hpp>
#include "core/WrapExecution.hpp"
2020-02-26 09:57:17 +08:00
#ifdef MNN_EXPR_ENABLE_PROFILER
#define MNN_EXPRESS_ERROR_REPORT
#endif
#define MNN_EXPRESS_OPEN_MEMORY_REUSE
2019-12-27 22:16:57 +08:00
namespace MNN {
namespace Express {
2020-07-04 01:21:30 +08:00
static bool hasNoneOutput(const std::vector<Tensor*>& outputs) {
for (const Tensor* t : outputs) {
if (t->elementSize() == 0) {
return true;
}
}
return false;
}
static bool AllocateTensor(Backend* backend, Tensor* tensor,
const Backend::StorageType& storageType) {
if (tensor->size() <= 0) {
tensor->buffer().host = nullptr;
return true;
}
TensorUtils::getDescribe(tensor)->backend = backend;
return backend->onAcquireBuffer(tensor, storageType);
}
class Executor::Profiler {
public:
void reset();
void dump() const;
void add(int opType, float timeInMs);
private:
std::map<int, float> mTimes;
};
void Executor::Profiler::reset() {
mTimes.clear();
}
void Executor::Profiler::dump() const {
for (auto iter : mTimes) {
MNN_PRINT("%s: %f ms\n", EnumNameOpType((OpType)iter.first), iter.second);
}
}
void Executor::Profiler::add(int opType, float timeInMs) {
auto iter = mTimes.find(opType);
if (iter == mTimes.end()) {
mTimes[opType] = timeInMs;
return;
}
iter->second += timeInMs;
}
2019-12-27 22:16:57 +08:00
void Executor::setGlobalExecutorConfig(MNNForwardType type, const BackendConfig& config, int numberThread) {
std::lock_guard<std::mutex> _l(mMutex);
auto creator = MNNGetExtraBackendCreator(type);
if (nullptr == creator) {
MNN_ERROR("Error to find creator of %d\n", type);
return;
}
_resetCache();
2019-12-27 22:16:57 +08:00
Backend::Info info;
info.type = type;
info.numThread = numberThread;
BackendConfig cfg = config;
info.user = &cfg;
2019-12-27 22:16:57 +08:00
std::shared_ptr<Backend> bn(creator->onCreate(info));
mBackend = bn;
}
void Executor::_resetCache() {
}
2019-12-27 22:16:57 +08:00
void Executor::gc(GCFlag flag) {
std::lock_guard<std::mutex> _l(mMutex);
_resetCache();
if (FULL == flag) {
mBackend->onClearBuffer();
mBackupBackend->onClearBuffer();
}
}
Executor::Executor(std::shared_ptr<Backend> backend) {
mBackend = backend;
if (mBackend->type() == MNN_FORWARD_CPU) {
mBackupBackend = mBackend;
} else {
Backend::Info info;
info.type = MNN_FORWARD_CPU;
info.numThread = 1;
auto creator = MNNGetExtraBackendCreator(MNN_FORWARD_CPU);
mBackupBackend.reset(creator->onCreate(info));
}
_resetCache();
#ifdef MNN_EXPR_ENABLE_PROFILER
mProfiler.reset(new Profiler);
#endif
}
Executor::~Executor(){
mBackend = nullptr;
mBackupBackend = nullptr;
}
void Executor::_addToCache(const std::vector<std::shared_ptr<ComputeCache>>& caches) {
//FUNC_PRINT(mCaches.size());
}
Executor::Requirement Executor::getRequirement(Expr* expr) const {
Executor::Requirement req;
auto op = expr->get();
auto inputSize = expr->inputs().size();
req.contentNeedContent.resize(inputSize);
req.shapeNeedContent.resize(inputSize);
req.supportError.resize(inputSize);
if (op->type() == OpType_Extra) {
for (int i = 0; i < inputSize; ++i) {
req.contentNeedContent[i] = true;
req.shapeNeedContent[i] = false;
req.supportError[i] = false;
}
return req;
}
for (int i = 0; i < inputSize; ++i) {
req.contentNeedContent[i] = SizeComputer::opNeedContent(op->type(), i);
2020-07-04 01:21:30 +08:00
req.shapeNeedContent[i] = false;
if (op->type() != OpType_Concat) {
req.supportError[i] = false;
} else {
req.supportError[i] = true;
}
}
auto needIndexId = SizeComputer::needInputContent(op);
for (auto index : needIndexId) {
if (index < req.shapeNeedContent.size()) {
req.shapeNeedContent[index] = true;
}
}
return req;
2019-12-27 22:16:57 +08:00
}
std::shared_ptr<Executor> Executor::getGlobalExecutor() {
static std::once_flag of;
static std::shared_ptr<Executor> gExecutor;
std::call_once(of, [&]() {
auto creator = MNNGetExtraBackendCreator(MNN_FORWARD_CPU);
SizeComputerSuite::init();
Backend::Info info;
info.type = MNN_FORWARD_CPU;
info.numThread = 1;
std::shared_ptr<Backend> bn(creator->onCreate(info));
gExecutor.reset(new Executor(bn));
});
return gExecutor;
}
ErrorCode Executor::computeInfo(Expr* expr) {
MNN_ASSERT(nullptr != expr);
MNN_ASSERT(nullptr != expr->get());
if (expr->get()->type() == OpType_Extra) {
return NOT_SUPPORT;
}
std::lock_guard<std::mutex> _l(mMutex);
mStackInputs.resize(expr->inputs().size());
mStackOutputs.resize(expr->outputSize());
if (mStack.size() < mStackInputs.size() + mStackOutputs.size()) {
int origin = (int)mStack.size();
int destSize = (int)(mStackInputs.size() + mStackOutputs.size());
for (int i=origin; i<destSize; ++i) {
mStack.emplace_back(std::shared_ptr<Tensor>(new Tensor));
2019-12-27 22:16:57 +08:00
}
}
for (int i=0; i<mStackInputs.size(); ++i) {
mStackInputs[i] = mStack[i].get();
}
for (int i=0; i<mStackOutputs.size(); ++i) {
mStackOutputs[i] = mStack[i+(int)mStackInputs.size()].get();
}
auto op = expr->get();
for (int i = 0; i < expr->inputs().size(); ++i) {
auto inputExpr = expr->inputs()[i]->expr();
Utils::copyInfoToTensor(mStackInputs[i], inputExpr.first->outputInfo(inputExpr.second));
}
2020-07-04 01:21:30 +08:00
bool res = SizeComputer::computeOutputSize(op, mStackInputs, mStackOutputs);
if (!res) {
// Compute Error
#ifdef MNN_EXPRESS_ERROR_REPORT
2020-02-26 09:57:17 +08:00
if (expr->name().empty()) {
MNN_ERROR("Error to compute shape for %s\n", EnumNameOpType(op->type()));
} else {
MNN_ERROR("Error to compute shape for %s, %s\n", EnumNameOpType(op->type()), expr->name().c_str());
}
#endif
return COMPUTE_SIZE_ERROR;
}
for (int i = 0; i < mStackOutputs.size(); ++i) {
auto tensor = mStackOutputs[i];
2020-07-04 01:21:30 +08:00
#ifdef MNN_EXPRESS_ERROR_REPORT
bool hasNoneOutput = false;
// MNN_PRINT("Output(%d): [", i);
for (int j = 0; j < tensor->dimensions(); ++j) {
2020-07-04 01:21:30 +08:00
// MNN_PRINT("%d, ", tensor->length(j));
if (tensor->length(j) <= 0) {
2020-07-04 01:21:30 +08:00
hasNoneOutput = true;
2019-12-27 22:16:57 +08:00
}
}
2020-07-04 01:21:30 +08:00
// MNN_PRINT("]\n");
if (hasNoneOutput) {
if (nullptr != op->name()) {
MNN_PRINT("The output has 0 elements for %s\n", op->name()->c_str());
} else {
MNN_PRINT("The output has 0 elements for %s\n", EnumNameOpType(op->type()));
}
}
#endif // MNN_EXPRESS_ERROR_REPORT
auto shape = expr->outputInfo(i);
Utils::copyTensorToInfo(shape, tensor);
}
return NO_ERROR;
}
void Executor::ComputeCache::syncInput(int offset, const Variable::Info* info) {
auto tensor = this->getTensor(offset, true);
Utils::copyInfoToTensor(tensor, info);
}
void Executor::ComputeCache::syncOutput(int offset, Variable::Info* info) {
auto tensor = this->getTensor(offset, true);
if (nullptr != tensor) {
info->ptr = tensor->host<void>();
2019-12-27 22:16:57 +08:00
}
}
void Executor::ComputeCache::setShapeDirty(int offset, Variable::Info* info) {
_setShapeDirty();
if (nullptr != info) {
syncInput(offset, info);
}
}
void Executor::ComputeCache::_setShapeDirty() {
mShapeDirty = true;
}
2020-02-26 09:57:17 +08:00
void Executor::ComputeCache::setContentReady() {
mContentDirty = false;
}
void Executor::ComputeCache::setContentDirty() {
mContentDirty = true;
}
void Executor::ComputeCache::TensorContent::reset() {
auto des = TensorUtils::getDescribe(tensor.get());
if (nullptr != des->backend && des->useCount >= 0) {
2020-07-04 01:21:30 +08:00
Backend::StorageType storageType = Backend::DYNAMIC;
if (aliveOutside) {
storageType = Backend::STATIC;
}
des->backend->onReleaseBuffer(tensor.get(), storageType);
}
des->backend = nullptr;
des->useCount = refCount;
}
class InputCache : public Executor::ComputeCache {
public:
InputCache() {}
2020-07-04 01:21:30 +08:00
~InputCache() {}
virtual ErrorCode compute() override {
if (mContentDirty) {
2020-07-04 01:21:30 +08:00
return INPUT_DATA_ERROR;
}
return NO_ERROR;
}
virtual ErrorCode resize() override {
return NO_ERROR;
}
virtual Tensor* getTensor(int offset, bool host) override {
return &mTensor;
}
private:
Tensor mTensor;
};
class PipelineCache : public Executor::ComputeCache {
public:
PipelineCache();
2020-07-04 01:21:30 +08:00
virtual ~PipelineCache();
virtual Tensor* getTensor(int offset, bool host) override {
auto tensor = mOutputs[offset];
if (tensor->host<void>() != nullptr || !host) {
return tensor;
}
auto iter = mCopyOutputs.find(tensor);
if (iter == mCopyOutputs.end()) {
// First get tensor, create and copy
TensorContent content;
content.tensor.reset(new Tensor);
2020-07-04 01:21:30 +08:00
content.tensor->setType(Utils::convertDataType(tensor->getType()));
TensorUtils::copyShape(tensor, content.tensor.get(), true);
2020-07-04 01:21:30 +08:00
bool res = AllocateTensor(mBackupBackend.get(), content.tensor.get(), Backend::DYNAMIC);
if (!res) {
MNN_ERROR("Malloc error when copy out\n");
return nullptr;
}
tensor->copyToHostTensor(content.tensor.get());
mCopyOutputs.insert(std::make_pair(tensor, content.tensor.get()));
mTensors.emplace_back(std::move(content));
iter = mCopyOutputs.find(tensor);
2019-12-27 22:16:57 +08:00
}
return iter->second;
2019-12-27 22:16:57 +08:00
}
virtual ErrorCode compute() override;
virtual ErrorCode resize() override;
2020-07-04 01:21:30 +08:00
private:
2020-07-04 01:21:30 +08:00
void _updateOutputInfo(ComputeCache::Unit* unit);
std::set<std::shared_ptr<ComputeCache>> mInputs;
std::vector<Tensor*> mOutputs;
std::vector<TensorContent> mTensors;
std::vector<std::shared_ptr<Unit>> mUnits;
std::map<Tensor*, Tensor*> mCopyOutputs;
std::shared_ptr<Backend> mBackend;
std::shared_ptr<Backend> mBackupBackend;
friend class Executor;
};
2019-12-27 22:16:57 +08:00
struct Executor::ComputeCache::Unit {
std::vector<Tensor*> inputs;
std::vector<int> inputsNeedRelease;
std::vector<Tensor*> outputs;
2020-07-04 01:21:30 +08:00
std::vector<bool> aliveOutside;
const Op* op;
std::weak_ptr<Expr::Inside> inside;
std::shared_ptr<Execution> exe;
std::shared_ptr<char> extraBuffer;
std::vector<std::pair<Tensor*, const Variable::Info*>> inputOutsides;
};
PipelineCache::PipelineCache() {
// Do nothing
}
PipelineCache::~PipelineCache() {
mUnits.clear();
for (auto t : mTensors) {
t.reset();
}
}
ErrorCode PipelineCache::compute() {
if (mShapeDirty) {
auto code = resize();
if (NO_ERROR != code) {
return code;
2019-12-27 22:16:57 +08:00
}
}
if (!mContentDirty) {
return NO_ERROR;
}
for (auto c : mInputs) {
auto code = c->compute();
if (NO_ERROR != code) {
return code;
2019-12-27 22:16:57 +08:00
}
}
mBackend->onExecuteBegin();
//mBackupBackend->onExecuteBegin();
for (int i=0; i<mUnits.size(); ++i) {
auto& iter = *mUnits[i];
if (nullptr == iter.exe) {
2020-07-04 01:21:30 +08:00
// MNN_ERROR("Skip %s\n", iter.op->name()->str().c_str());
continue;
}
auto inside = iter.inside.lock();
if (nullptr == inside || inside->mInfoDirty) {
2020-07-04 01:21:30 +08:00
// MNN_ERROR("Skip %s\n", iter.op->name()->str().c_str());
continue;
}
#ifdef MNN_EXPR_ENABLE_PROFILER
Timer autoTime;
#endif
2020-07-04 01:21:30 +08:00
// Skip resize and execute if there is nothing to compute.
if (!hasNoneOutput(iter.outputs)) {
auto code = iter.exe->onExecute(iter.inputs, iter.outputs);
if (NO_ERROR != code) {
2020-02-26 09:57:17 +08:00
#ifdef MNN_EXPRESS_ERROR_REPORT
2020-07-04 01:21:30 +08:00
MNN_ERROR("Error to execute for %s\n", EnumNameOpType(iter.op->type()));
2020-02-26 09:57:17 +08:00
#endif
2020-07-04 01:21:30 +08:00
mBackend->onExecuteEnd();
return code;
}
}
2020-07-04 01:21:30 +08:00
_updateOutputInfo(&iter);
inside->mContentDirty = false;
2020-07-04 01:21:30 +08:00
#ifdef MNN_EXPR_ENABLE_PROFILER
float costTime = (float)autoTime.durationInUs() / (float)1000;
Executor::getGlobalExecutor()->addOpCostTime((int)mUnits[i]->op->type(), costTime);
#endif
}
mBackend->onExecuteEnd();
//mBackupBackend->onExecuteEnd();
for (auto iter : mCopyOutputs) {
iter.first->copyToHostTensor(iter.second);
}
mContentDirty = false;
return NO_ERROR;
}
2020-07-04 01:21:30 +08:00
void PipelineCache::_updateOutputInfo(ComputeCache::Unit* unit) {
for (int i = 0; i < unit->outputs.size(); ++i) {
Tensor* output = unit->outputs[i];
Variable::Info& info = unit->inside.lock()->mOutputInfos[i];
info.dim = output->shape();
info.syncSize();
}
}
ErrorCode PipelineCache::resize() {
if (!mShapeDirty) {
2019-12-27 22:16:57 +08:00
return NO_ERROR;
}
for (auto c : mInputs) {
auto code = c->resize();
if (NO_ERROR != code) {
return code;
2019-12-27 22:16:57 +08:00
}
}
for (auto& t : mTensors) {
t.reset();
}
for (auto& tensor : mOutputs) {
TensorUtils::getDescribe(tensor)->useCount += 1;
}
mShapeDirty = false;
for (int unitIndex = 0; unitIndex < mUnits.size(); ++unitIndex) {
auto& iter = *mUnits[unitIndex];
auto inside = iter.inside.lock();
if (nullptr == inside || inside->mInfoDirty) {
mShapeDirty = true;
continue;
}
for (auto& tensor : iter.inputOutsides) {
Utils::copyInfoToTensor(tensor.first, tensor.second);
}
for (int i=0; i<iter.outputs.size(); ++i) {
Utils::copyInfoToTensor(iter.outputs[i], inside->mOutputInfos.data() + i);
iter.outputs[i]->buffer().host = nullptr;
2019-12-27 22:16:57 +08:00
}
if (nullptr == iter.exe) {
#ifdef MNN_EXPR_ENABLE_PROFILER
Timer autoTime;
#endif
iter.exe.reset(mBackend->onCreate(iter.inputs, iter.outputs, iter.op));
if (nullptr == iter.exe) {
iter.exe.reset(mBackupBackend->onCreate(iter.inputs, iter.outputs, iter.op));
}
// Check if need wrap
bool needWrap = false;
auto bn = iter.exe->backend();
auto iterType = bn->type();
for (int i=0; i<inside->mReq.contentNeedContent.size(); ++i) {
if (!inside->mReq.contentNeedContent[i]) {
continue;
}
auto tensorBn = TensorUtils::getDescribe(iter.inputs[i])->backend;
auto type = MNN_FORWARD_CPU;
if (nullptr != tensorBn) {
type = tensorBn->type();
}
if (iterType != type) {
needWrap = true;
break;
}
}
if (needWrap) {
iter.exe.reset(new WrapExecution(mBackupBackend.get(), iter.exe));
}
#ifdef MNN_EXPR_ENABLE_PROFILER
float costTime = (float)autoTime.durationInUs() / (float)1000;
Executor::getGlobalExecutor()->addOpCostTime((int)iter.op->type(), costTime);
#endif
}
if (nullptr == iter.exe) {
return NOT_SUPPORT;
}
#ifdef MNN_EXPR_ENABLE_PROFILER
Timer autoTime;
#endif
2020-07-04 01:21:30 +08:00
auto bn = iter.exe->backend();
for (int i=0; i<iter.outputs.size(); ++i) {
2020-07-04 01:21:30 +08:00
Backend::StorageType storageType = Backend::DYNAMIC;
if (iter.aliveOutside[i]) {
storageType = Backend::STATIC;
}
bool res = AllocateTensor(bn, iter.outputs[i], storageType);
if (!res) {
return OUT_OF_MEMORY;
}
}
2020-07-04 01:21:30 +08:00
// Skip resize and execute if there is nothing to compute.
if (!hasNoneOutput(iter.outputs)) {
auto code = iter.exe->onResize(iter.inputs, iter.outputs);
if (NO_ERROR != code) {
return code;
}
}
#ifdef MNN_EXPR_ENABLE_PROFILER
float costTime = (float)autoTime.durationInUs() / (float)1000;
Executor::getGlobalExecutor()->addOpCostTime((int)iter.op->type(), costTime);
#endif
2020-07-04 01:21:30 +08:00
#ifdef MNN_EXPRESS_OPEN_MEMORY_REUSE
for (int i=0; i<iter.inputsNeedRelease.size(); ++i) {
auto index = iter.inputsNeedRelease[i];
auto des = TensorUtils::getDescribe(iter.inputs[index]);
des->useCount--;
if (des->useCount <= 0 && des->backend != nullptr) {
des->backend->onReleaseBuffer(iter.inputs[index], Backend::DYNAMIC);
//Set useCount < 0, so tensorContent's reset will not release it
des->useCount = -1;
2020-07-04 01:21:30 +08:00
des->backend = nullptr;
}
2019-12-27 22:16:57 +08:00
}
#endif
2019-12-27 22:16:57 +08:00
}
for (auto iter : mCopyOutputs) {
TensorUtils::copyShape(iter.first, iter.second, true);
2020-07-04 01:21:30 +08:00
bool res = AllocateTensor(mBackupBackend.get(), iter.second, Backend::DYNAMIC);
if (!res) {
return OUT_OF_MEMORY;
}
2019-12-27 22:16:57 +08:00
}
mContentDirty = true;
return NO_ERROR;
2019-12-27 22:16:57 +08:00
}
static void _collectExecuteUnit(std::vector<std::shared_ptr<Executor::ComputeCache::Unit>>& dest, EXPRP expr) {
auto& inputs = expr->inputs();
auto& req = expr->inside()->mReq.contentNeedContent;
MNN_ASSERT(inputs.size() == req.size());
for (int i=0; i<inputs.size(); ++i) {
if (!req[i]) {
continue;
2019-12-27 22:16:57 +08:00
}
auto inputExpr = inputs[i]->expr();
auto unit = inputExpr.first->inside()->mUnit;
if (nullptr == unit) {
continue;
}
auto inputCache = inputExpr.first->inside()->mCache;
if (nullptr != inputCache) {
continue;
}
_collectExecuteUnit(dest, inputExpr.first);
2019-12-27 22:16:57 +08:00
}
auto unit = expr->inside()->mUnit;
if (nullptr == unit) {
return;
}
expr->inside()->mLinkCache = true;
dest.emplace_back(std::move(unit));
expr->inside()->mUnit = nullptr;
}
void Executor::_createSingle(EXPRP expr) {
MNN_ASSERT(expr->get() == nullptr);
auto cache = expr->inside()->mCache;
cache.reset(new InputCache);
expr->inside()->mCache = cache;
expr->inside()->mCacheOffset = 0;
cache->syncInput(0, expr->outputInfo(0));
if (VARP::INPUT == expr->inputType()) {
cache->setContentDirty();
} else {
cache->setContentReady();
}
}
void Executor::_create(const std::vector<EXPRP>& outputs, std::set<std::shared_ptr<Executor::ComputeCache>>&& inputCaches, std::vector<ComputeCache::TensorContent>&& tensors, bool forceCPU) {
std::vector<EXPRP> packed;
for (auto expr : outputs) {
// Make Cache For Single Tensor
auto cache = expr->inside()->mCache;
if (nullptr != cache) {
continue;
}
if (nullptr != expr->get()) {
packed.emplace_back(expr);
continue;
}
_createSingle(expr);
2019-12-27 22:16:57 +08:00
}
if (packed.empty()) {
return;
}
std::shared_ptr<PipelineCache> packedCache(new PipelineCache);
if (forceCPU) {
packedCache->mBackend = mBackupBackend;
} else {
packedCache->mBackend = mBackend;
}
2020-07-04 01:21:30 +08:00
std::unordered_set<Tensor*> aliveOutputs;
packedCache->mInputs = std::move(inputCaches);
for (auto expr : packed) {
expr->inside()->mCacheOffset = (int)packedCache->mOutputs.size();
MNN_ASSERT(expr->inside()->mUnit != nullptr);
auto& originOutputs = expr->inside()->mUnit->outputs;
for (auto t : originOutputs) {
packedCache->mOutputs.emplace_back(t);
2020-07-04 01:21:30 +08:00
aliveOutputs.insert(t);
}
auto& aliveOutside = expr->inside()->mUnit->aliveOutside;
for (int i = 0; i < aliveOutside.size(); ++i) {
aliveOutside[i] = true;
2019-12-27 22:16:57 +08:00
}
expr->inside()->mCache = std::static_pointer_cast<ComputeCache>(packedCache);
2019-12-27 22:16:57 +08:00
}
2020-07-04 01:21:30 +08:00
for (auto& content : tensors) {
if (aliveOutputs.count(content.tensor.get())) {
content.aliveOutside = true;
}
}
packedCache->mTensors = std::move(tensors);
packedCache->mBackupBackend = mBackupBackend;
// Backup Tensor Refcount
for (auto& t : packedCache->mTensors) {
t.refCount = TensorUtils::getDescribe(t.tensor.get())->useCount;
}
// Create Units
for (auto expr : packed) {
_collectExecuteUnit(packedCache->mUnits, expr);
}
2019-12-27 22:16:57 +08:00
}
void Executor::_visit(EXPRP expr, std::set<std::shared_ptr<Executor::ComputeCache>>& inputCaches, std::vector<ComputeCache::TensorContent>& tensors) {
auto& inputs = expr->inputs();
auto& req = expr->inside()->mReq.contentNeedContent;
MNN_ASSERT(inputs.size() == req.size());
// Create Input's Unit / Cache
for (int i=0; i<inputs.size(); ++i) {
if (!req[i]) {
continue;
}
auto inputExpr = inputs[i]->expr();
if (nullptr != inputExpr.first->inside()->mUnit) {
continue;
}
auto inputCache = inputExpr.first->inside()->mCache;
if (nullptr != inputCache) {
inputCaches.insert(inputCache);
continue;
2019-12-27 22:16:57 +08:00
}
_visit(inputExpr.first, inputCaches, tensors);
2019-12-27 22:16:57 +08:00
}
// Create Self Unit / Cache
auto op = expr->get();
if (nullptr == op) {
// Make Cache For Single Tensor
_createSingle(expr);
2020-02-26 09:57:17 +08:00
inputCaches.insert(expr->inside()->mCache);
return;
}
std::shared_ptr<ComputeCache::Unit> unitP(new ComputeCache::Unit);
ComputeCache::Unit& unit = *unitP;
unit.op = expr->get();
unit.extraBuffer = expr->extra().first;
unit.inside = std::weak_ptr<Expr::Inside>(expr->inside());
unit.inputs.resize(inputs.size());
for (int i=0; i<inputs.size(); ++i) {
auto inputExpr = inputs[i]->expr();
if (!req[i]) {
// The compute don't need it, but need shape info for exe's onResize
ComputeCache::TensorContent content;
content.tensor.reset(new Tensor);
unit.inputOutsides.emplace_back(std::make_pair(content.tensor.get(), inputExpr.first->outputInfo(inputExpr.second)));
unit.inputs[i] = content.tensor.get();
tensors.emplace_back(std::move(content));
continue;
2019-12-27 22:16:57 +08:00
}
auto inputUnit = inputExpr.first->inside()->mUnit;
if (nullptr != inputUnit) {
unit.inputs[i] = inputUnit->outputs[inputExpr.second];
TensorUtils::getDescribe(unit.inputs[i])->useCount++;
unit.inputsNeedRelease.emplace_back(i);
continue;
}
auto inputCache = inputExpr.first->inside()->mCache;
if (nullptr != inputCache) {
unit.inputs[i] = inputCache->getTensor(inputExpr.first->inside()->mCacheOffset + inputExpr.second, false);
continue;
}
MNN_ASSERT(false);
}
unit.outputs.resize(expr->outputSize());
2020-07-04 01:21:30 +08:00
unit.aliveOutside.resize(expr->outputSize());
for (int i=0; i<unit.outputs.size(); ++i) {
ComputeCache::TensorContent content;
content.tensor.reset(new Tensor);
unit.outputs[i] = content.tensor.get();
2020-07-04 01:21:30 +08:00
unit.aliveOutside[i] = false;
tensors.emplace_back(std::move(content));
2019-12-27 22:16:57 +08:00
}
expr->inside()->mUnit = unitP;
2019-12-27 22:16:57 +08:00
}
void Executor::makeCache(const std::vector<EXPRP>& expr, bool forceCPU) {
2019-12-27 22:16:57 +08:00
std::lock_guard<std::mutex> _l(mMutex);
//FUNC_PRINT(mCaches.size());
std::set<std::shared_ptr<Executor::ComputeCache>> inputCaches;
std::vector<ComputeCache::TensorContent> tensors;
for (auto e : expr) {
_visit(e, inputCaches, tensors);
}
_create(expr, std::move(inputCaches), std::move(tensors), forceCPU);
}
void Executor::addOpCostTime(int op, float costTime) {
#ifdef MNN_EXPR_ENABLE_PROFILER
mProfiler->add(op, costTime);
#endif
2019-12-27 22:16:57 +08:00
}
ErrorCode Executor::runCache(std::shared_ptr<ComputeCache> cache) {
2019-12-27 22:16:57 +08:00
std::lock_guard<std::mutex> _l(mMutex);
return cache->compute();
}
void Executor::resetProfile() {
#ifdef MNN_EXPR_ENABLE_PROFILER
mProfiler->reset();
#endif
}
void Executor::dumpProfile() {
#ifdef MNN_EXPR_ENABLE_PROFILER
mProfiler->dump();
#endif
2019-12-27 22:16:57 +08:00
}
} // namespace Express
} // namespace MNN