MNN/source/backend/opencl/execution/buffer/LayerNormBufExecution.cpp

315 lines
15 KiB
C++
Raw Normal View History

2023-07-18 09:36:26 +08:00
//
// LayerNormBufExecution.cpp
// MNN
//
// Created by MNN on 2023/07/05.
// Copyright © 2018, Alibaba Group Holding Limited
//
#ifndef MNN_OPENCL_BUFFER_CLOSED
#include "backend/opencl/execution/buffer/LayerNormBufExecution.hpp"
namespace MNN {
namespace OpenCL {
LayerNormBufExecution::LayerNormBufExecution(const std::vector<Tensor *> &inputs, const MNN::Op *op, Backend *backend)
2024-04-19 11:58:21 +08:00
: CommonExecution(backend, op) {
2023-07-18 09:36:26 +08:00
mOpenCLBackend = static_cast<OpenCLBackend *>(backend);
auto runtime = mOpenCLBackend->getOpenCLRuntime();
const auto* layer_norm_param = op->main_as_LayerNorm();
2024-04-19 11:58:21 +08:00
if (nullptr != layer_norm_param->axis()) {
axis_size = layer_norm_param->axis()->size();
}
2023-07-18 09:36:26 +08:00
epsilon_ = layer_norm_param->epsilon();
group_ = layer_norm_param->group();
2024-04-19 11:58:21 +08:00
RMSNorm = layer_norm_param->useRMSNorm();
2023-07-31 14:24:48 +08:00
auto bufferUnitSize = runtime->isSupportedFP16() ? sizeof(half_float::half) : sizeof(float);
2023-12-27 17:26:44 +08:00
auto kernel = runtime->buildKernel("layernorm_buf", "layernorm_w_buf", {"-DLOCAL_SIZE=512"});
mMaxWorkGroupSize = static_cast<uint32_t>(runtime->getMaxWorkGroupSize(kernel));
2023-07-18 09:36:26 +08:00
if(layer_norm_param->gamma() && layer_norm_param->beta()){
has_gamma_beta_ = true;
{
auto error = CL_SUCCESS;
int size = layer_norm_param->gamma()->size();
2023-07-31 14:24:48 +08:00
mGammaBuffer.reset(new cl::Buffer(mOpenCLBackend->getOpenCLRuntime()->context(), CL_MEM_READ_WRITE | CL_MEM_ALLOC_HOST_PTR, ALIGN_UP4(size) * bufferUnitSize));
auto GammaPtrCL = mOpenCLBackend->getOpenCLRuntime()->commandQueue().enqueueMapBuffer(*(mGammaBuffer.get()), true, CL_MAP_WRITE, 0, ALIGN_UP4(size) * bufferUnitSize, nullptr, nullptr, &error);
2023-07-18 09:36:26 +08:00
const float* gamma_data = layer_norm_param->gamma()->data();
if(GammaPtrCL != nullptr && error == CL_SUCCESS){
if(mOpenCLBackend->getOpenCLRuntime()->isSupportedFP16()){
for (int i = 0; i < size; i++)
{
((half_float::half*)GammaPtrCL)[i] = (half_float::half)(gamma_data[i]);
}
for(int i=size; i<ALIGN_UP4(size); i++) {
((half_float::half*)GammaPtrCL)[i] = (half_float::half)(0.0f);
}
}else{
::memset(GammaPtrCL, 0, ALIGN_UP4(size) * sizeof(float));
::memcpy(GammaPtrCL, gamma_data, size * sizeof(float));
}
}else{
MNN_ERROR("Map error GammaPtrCL == nullptr \n");
}
mOpenCLBackend->getOpenCLRuntime()->commandQueue().enqueueUnmapMemObject(*mGammaBuffer.get(), GammaPtrCL);
}
{
auto error = CL_SUCCESS;
int size = layer_norm_param->beta()->size();
2023-07-31 14:24:48 +08:00
mBetaBuffer.reset(new cl::Buffer(mOpenCLBackend->getOpenCLRuntime()->context(), CL_MEM_READ_WRITE | CL_MEM_ALLOC_HOST_PTR, ALIGN_UP4(size) * bufferUnitSize));
auto BetaPtrCL = mOpenCLBackend->getOpenCLRuntime()->commandQueue().enqueueMapBuffer(*(mBetaBuffer.get()), true, CL_MAP_WRITE, 0, ALIGN_UP4(size) * bufferUnitSize, nullptr, nullptr, &error);
2023-07-18 09:36:26 +08:00
const float* beta_data = layer_norm_param->beta()->data();
if(BetaPtrCL != nullptr && error == CL_SUCCESS){
if(mOpenCLBackend->getOpenCLRuntime()->isSupportedFP16()){
for (int i = 0; i < size; i++)
{
((half_float::half*)BetaPtrCL)[i] = (half_float::half)(beta_data[i]);
}
for(int i=size; i<ALIGN_UP4(size); i++) {
((half_float::half*)BetaPtrCL)[i] = (half_float::half)(0.0f);
}
}else{
::memset(BetaPtrCL, 0, ALIGN_UP4(size) * sizeof(float));
::memcpy(BetaPtrCL, beta_data, size * sizeof(float));
}
}else{
MNN_ERROR("Map error BetaPtrCL == nullptr \n");
}
mOpenCLBackend->getOpenCLRuntime()->commandQueue().enqueueUnmapMemObject(*mBetaBuffer.get(), BetaPtrCL);
}
}
}
int LayerNormBufExecution::getLocalSize(int size, int maxGroupSize){
int local_size = 1;
while(local_size * 2 <= maxGroupSize && local_size * 2 <= size){
local_size *= 2;
}
return local_size;
}
2024-04-19 11:58:21 +08:00
ErrorCode LayerNormBufExecution::onEncode(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs) {
mUnits.resize(1);
auto &unit = mUnits[0];
2023-07-18 09:36:26 +08:00
Tensor *input = inputs[0];
Tensor *output = outputs[0];
auto runtime = ((OpenCLBackend *)backend())->getOpenCLRuntime();
2024-05-11 19:17:02 +08:00
auto MaxLocalSize = std::min(runtime->getMaxWorkItemSizes()[0], mMaxWorkGroupSize) / 4;
2023-07-18 09:36:26 +08:00
std::vector<int> inputShape = tensorShapeFormat(input);
std::vector<int> outputShape = tensorShapeFormat(output);
2023-07-31 14:24:48 +08:00
const int inputBatch = inputShape[0];
const int inputHeight = inputShape[1];
const int inputWidth = inputShape[2];
const int inputChannels = inputShape[3];
2023-07-18 09:36:26 +08:00
int local_size;
2023-07-31 14:24:48 +08:00
int rank = inputs.at(0)->dimensions();
int outter_size = 1;
int inner_size = 1;
for (int i = 0; i < rank - axis_size; ++i) {
outter_size *= inputs.at(0)->length(i);
}
for (int i = rank - axis_size; i < rank; ++i) {
inner_size *= inputs.at(0)->length(i);
}
2023-07-18 09:36:26 +08:00
2024-05-11 19:17:02 +08:00
if (group_ > 1) {
outter_size = inputs[0]->length(0) * group_;
inner_size = 1;
for (int i = 1; i < rank; i++) {
inner_size *= inputs[0]->length(i);
}
inner_size /= group_;
}
2023-07-18 09:36:26 +08:00
std::set<std::string> buildOptions;
2024-04-19 11:58:21 +08:00
if(RMSNorm){
buildOptions.emplace("-DRMSNORM");
}
2023-07-18 09:36:26 +08:00
if(has_gamma_beta_){
buildOptions.emplace("-DGAMMA_BETA");
}
std::string kernelName;
2023-07-31 14:24:48 +08:00
if (inner_size == inputWidth && outter_size == inputBatch * inputHeight * inputChannels) {
2023-07-18 09:36:26 +08:00
kernelName = "layernorm_w_buf";
2023-12-27 17:26:44 +08:00
local_size = getLocalSize(inputWidth, MaxLocalSize);
2023-07-18 09:36:26 +08:00
buildOptions.emplace("-DLOCAL_SIZE=" + std::to_string(local_size));
2024-04-19 11:58:21 +08:00
unit.kernel = runtime->buildKernel("layernorm_buf", kernelName, buildOptions);
2023-07-18 09:36:26 +08:00
mGWS = {static_cast<uint32_t>(local_size),
static_cast<uint32_t>(inputHeight * UP_DIV(inputChannels, 4)),
static_cast<uint32_t>(inputBatch)};
2023-07-31 14:24:48 +08:00
}else if(inner_size == inputWidth * inputHeight && outter_size == inputBatch * inputChannels){
2023-07-18 09:36:26 +08:00
kernelName = "layernorm_hw_buf";
2023-12-27 17:26:44 +08:00
local_size = getLocalSize(inputWidth * inputHeight, MaxLocalSize);
2023-07-18 09:36:26 +08:00
buildOptions.emplace("-DLOCAL_SIZE=" + std::to_string(local_size));
2024-04-19 11:58:21 +08:00
unit.kernel = runtime->buildKernel("layernorm_buf", kernelName, buildOptions);
2023-07-18 09:36:26 +08:00
mGWS = {static_cast<uint32_t>(local_size),
static_cast<uint32_t>(UP_DIV(inputChannels, 4)),
static_cast<uint32_t>(inputBatch)};
2023-07-31 14:24:48 +08:00
}else if(inner_size == inputWidth * inputHeight * inputChannels && outter_size == inputBatch){
2023-07-18 09:36:26 +08:00
kernelName = "layernorm_chw_buf";
2023-12-27 17:26:44 +08:00
local_size = getLocalSize(inputWidth * inputHeight, MaxLocalSize);
2023-07-18 09:36:26 +08:00
buildOptions.emplace("-DLOCAL_SIZE=" + std::to_string(local_size));
2024-04-19 11:58:21 +08:00
unit.kernel = runtime->buildKernel("layernorm_buf", kernelName, buildOptions);
2023-07-18 09:36:26 +08:00
mGWS = {static_cast<uint32_t>(local_size),
static_cast<uint32_t>(1),
static_cast<uint32_t>(inputBatch)};
2024-05-11 19:17:02 +08:00
} else if(inner_size == inputWidth * inputHeight * inputChannels / group_ && outter_size == inputBatch * group_){
mUnits.clear();
mUnits.resize(3);
std::vector<int> inputShape = tensorShapeFormat(inputs[0]);
int inputWH[] = {inputShape[2], inputShape[1]};
int region[] = {inputShape[0], UP_DIV(inputShape[3], 4), inputShape[1], inputShape[2]};
mInputPlain = std::make_shared<Tensor>(Tensor::createDevice<float>(std::vector<int>{inputShape[0], inputShape[3], ROUND_UP(inputShape[1] * inputShape[2], 4), 1}, Tensor::CAFFE));
mOpenCLBackend->onAcquireBuffer(mInputPlain.get(), Backend::DYNAMIC);
mOutputPlain = std::make_shared<Tensor>(Tensor::createDevice<float>(std::vector<int>{inputShape[0], inputShape[3], ROUND_UP(inputShape[1] * inputShape[2], 4), 1}, Tensor::CAFFE));
mOpenCLBackend->onAcquireBuffer(mOutputPlain.get(), Backend::DYNAMIC);
// convert nc4hw4 to nchw
{
auto &unit = mUnits[0];
unit.kernel = runtime->buildKernel("buffer_convert_buf", "nc4hw4_buffer_to_nchw_buffer", {}, inputs[0], outputs[0]);
mGWS = {(uint32_t)(UP_DIV(region[3] * region[1], 16) * 16),
(uint32_t)(UP_DIV(region[2] * region[0], 16) * 16)};
mLWS = {16, 16};
unit.globalWorkSize = {mGWS[0], mGWS[1]};
unit.localWorkSize = {mLWS[0], mLWS[1]};
int global_dim0 = region[3] * region[1];
int global_dim1 = region[2] * region[0];
//MNN_CHECK_CL_SUCCESS
uint32_t idx = 0;
cl_int ret = CL_SUCCESS;
ret |= unit.kernel->get().setArg(idx++, global_dim0);
ret |= unit.kernel->get().setArg(idx++, global_dim1);
ret |= unit.kernel->get().setArg(idx++, openCLBuffer(mInputPlain.get()));
ret |= unit.kernel->get().setArg(idx++, inputWH[1]);
ret |= unit.kernel->get().setArg(idx++, inputWH[0]);
ret |= unit.kernel->get().setArg(idx++, inputShape[3]);
ret |= unit.kernel->get().setArg(idx++, openCLBuffer(input));
MNN_CHECK_CL_SUCCESS(ret, "setArg LayerNormBufExecution with group, convert nc4hw4 to nchw");
mOpenCLBackend->recordKernel2d(unit.kernel, mGWS, mLWS);
}
// do group layernorm
{
auto &unit = mUnits[1];
kernelName = "layernorm_plain_buf";
local_size = getLocalSize(UP_DIV(inner_size, 4), MaxLocalSize);
buildOptions.emplace("-DLOCAL_SIZE=" + std::to_string(local_size));
unit.kernel = runtime->buildKernel("layernorm_buf", kernelName, buildOptions);
mGWS = {static_cast<uint32_t>(local_size),
static_cast<uint32_t>(1),
static_cast<uint32_t>(outter_size)};
mLWS = {static_cast<uint32_t>(local_size), 1, 1};
unit.globalWorkSize = {mGWS[0], mGWS[1], mGWS[2]};
unit.localWorkSize = {mLWS[0], mLWS[1], mLWS[2]};
uint32_t idx = 0;
cl_int ret = CL_SUCCESS;
ret |= unit.kernel->get().setArg(idx++, mGWS[0]);
ret |= unit.kernel->get().setArg(idx++, mGWS[1]);
ret |= unit.kernel->get().setArg(idx++, mGWS[2]);
ret |= unit.kernel->get().setArg(idx++, openCLBuffer(mInputPlain.get()));
ret |= unit.kernel->get().setArg(idx++, openCLBuffer(mOutputPlain.get()));
ret |= unit.kernel->get().setArg(idx++, static_cast<int32_t>(inner_size));
ret |= unit.kernel->get().setArg(idx++, static_cast<int32_t>(outter_size));
if(has_gamma_beta_){
ret |= unit.kernel->get().setArg(idx++, *mGammaBuffer.get());
ret |= unit.kernel->get().setArg(idx++, *mBetaBuffer.get());
}
ret |= unit.kernel->get().setArg(idx++, epsilon_);
MNN_CHECK_CL_SUCCESS(ret, "setArg LayerNormBufExecution with group, do group layernorm");
mOpenCLBackend->recordKernel3d(unit.kernel, mGWS, mLWS);
}
// convert nchw to nc4hw4
{
auto &unit = mUnits[2];
unit.kernel = runtime->buildKernel("buffer_convert_buf", "nchw_buffer_to_nc4hw4_buffer", {}, inputs[0], outputs[0]);
mLWS = {16, 16};
mGWS = {(uint32_t)UP_DIV(region[3] * region[1], 16) * 16,
(uint32_t)UP_DIV(region[2] * region[0], 16) * 16};
unit.globalWorkSize = {mGWS[0], mGWS[1]};
unit.localWorkSize = {mLWS[0], mLWS[1]};
int global_dim0 = region[3] * region[1];
int global_dim1 = region[2] * region[0];
uint32_t idx = 0;
cl_int ret = CL_SUCCESS;
ret |= unit.kernel->get().setArg(idx++, global_dim0);
ret |= unit.kernel->get().setArg(idx++, global_dim1);
ret |= unit.kernel->get().setArg(idx++, openCLBuffer(mOutputPlain.get()));
ret |= unit.kernel->get().setArg(idx++, inputWH[1]);
ret |= unit.kernel->get().setArg(idx++, inputWH[0]);
ret |= unit.kernel->get().setArg(idx++, inputShape[3]);
ret |= unit.kernel->get().setArg(idx++, openCLBuffer(output));
MNN_CHECK_CL_SUCCESS(ret, "setArg LayerNormBufExecution with group, convert nchw to nc4hw4");
mOpenCLBackend->recordKernel2d(unit.kernel, mGWS, mLWS);
}
mOpenCLBackend->onReleaseBuffer(mInputPlain.get(), Backend::DYNAMIC);
mOpenCLBackend->onReleaseBuffer(mOutputPlain.get(), Backend::DYNAMIC);
return NO_ERROR;
2023-07-18 09:36:26 +08:00
}
mLWS = {static_cast<uint32_t>(local_size), 1, 1};
uint32_t idx = 0;
2023-07-31 14:24:48 +08:00
cl_int ret = CL_SUCCESS;
2024-04-19 11:58:21 +08:00
ret |= unit.kernel->get().setArg(idx++, mGWS[0]);
ret |= unit.kernel->get().setArg(idx++, mGWS[1]);
ret |= unit.kernel->get().setArg(idx++, mGWS[2]);
ret |= unit.kernel->get().setArg(idx++, openCLBuffer(input));
ret |= unit.kernel->get().setArg(idx++, openCLBuffer(output));
ret |= unit.kernel->get().setArg(idx++, static_cast<int32_t>(inputWidth));
ret |= unit.kernel->get().setArg(idx++, static_cast<int32_t>(inputHeight));
ret |= unit.kernel->get().setArg(idx++, static_cast<int32_t>(inputChannels));
2023-07-18 09:36:26 +08:00
if(has_gamma_beta_){
2024-04-19 11:58:21 +08:00
ret |= unit.kernel->get().setArg(idx++, *mGammaBuffer.get());
ret |= unit.kernel->get().setArg(idx++, *mBetaBuffer.get());
2023-07-18 09:36:26 +08:00
}
2024-04-19 11:58:21 +08:00
ret |= unit.kernel->get().setArg(idx++, epsilon_);
2023-07-31 14:24:48 +08:00
MNN_CHECK_CL_SUCCESS(ret, "setArg LayerNormBufExecution");
2024-04-19 11:58:21 +08:00
mOpenCLBackend->recordKernel3d(unit.kernel, mGWS, mLWS);
unit.globalWorkSize = {mGWS[0], mGWS[1], mGWS[2]};
unit.localWorkSize = {mLWS[0], mLWS[1], mLWS[2]};
2023-07-31 14:24:48 +08:00
2023-07-18 09:36:26 +08:00
return NO_ERROR;
}
class LayerNormBufCreator : public OpenCLBackend::Creator {
public:
virtual ~LayerNormBufCreator() = default;
virtual Execution *onCreate(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs,
const MNN::Op *op, Backend *backend) const override {
2023-07-31 14:24:48 +08:00
for (int i = 0; i < inputs.size(); ++i) {
TensorUtils::setTensorSupportPack(inputs[i], false);
}
for (int i = 0; i < outputs.size(); ++i) {
TensorUtils::setTensorSupportPack(outputs[i], false);
}
2023-07-18 09:36:26 +08:00
const auto* layer_norm_param = op->main_as_LayerNorm();
2023-07-31 14:24:48 +08:00
return new LayerNormBufExecution(inputs, op, backend);
2023-07-18 09:36:26 +08:00
}
};
2023-12-27 17:26:44 +08:00
REGISTER_OPENCL_OP_CREATOR(LayerNormBufCreator, OpType_LayerNorm, BUFFER);
2023-07-18 09:36:26 +08:00
} // namespace OpenCL
} // namespace MNN
#endif /* MNN_OPENCL_BUFFER_CLOSED */