MNN/source/backend/opencl/execution/buffer/MatmulBufExecution.cpp

128 lines
5.9 KiB
C++
Raw Normal View History

//
// MatmulBufExecution.cpp
// MNN
//
// Created by MNN on 2019/02/28.
// Copyright © 2018, Alibaba Group Holding Limited
//
#ifndef MNN_OPENCL_BUFFER_CLOSED
#include "backend/opencl/execution/buffer/MatmulBufExecution.hpp"
namespace MNN {
namespace OpenCL {
MatMulBufExecution::MatMulBufExecution(const std::vector<Tensor *> &inputs, const MNN::Op *op, Backend *backend,
2024-04-19 11:58:21 +08:00
bool transposeA, bool transposeB) : CommonExecution(backend, op)
, mTransposeA(transposeA), mTransposeB(transposeB){
mOpenCLBackend = static_cast<OpenCLBackend *>(backend);
}
2024-04-19 11:58:21 +08:00
ErrorCode MatMulBufExecution::onEncode(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs) {
mUnits.resize(1);
auto &unit = mUnits[0];
auto runtime = mOpenCLBackend->getOpenCLRuntime();
Tensor *input0 = inputs[0];
Tensor *input1 = inputs[1];
Tensor *output = outputs[0];
std::vector<int> input0Shape = tensorShapeFormat(input0);
std::vector<int> input1Shape = tensorShapeFormat(input1);
std::vector<int> outputShape = tensorShapeFormat(output);
2024-04-19 11:58:21 +08:00
std::set<std::string> buildOptions;
if(mTransposeA) {
mKernelName = mTransposeB ? "matmul_transA_transB_buf":"matmul_transA_buf";
} else {
mKernelName = mTransposeB ? "matmul_transB_buf":"matmul_buf";
}
2024-04-19 11:58:21 +08:00
if(inputs.size() > 2) {
buildOptions.emplace("-DBIAS");
}
2024-04-19 11:58:21 +08:00
unit.kernel = runtime->buildKernel("matmul_buf", mKernelName, buildOptions);
mMaxWorkGroupSize = static_cast<uint32_t>(runtime->getMaxWorkGroupSize(unit.kernel));
//处理二维矩阵相乘N C相当于H W
//二维矩阵相乘
cl_int ret = CL_SUCCESS;
if(mTransposeA) {
const int height = input0Shape.at(3);//input0 H
const int outputChannel = input0Shape.at(0);//input0 W
const int width = mTransposeB ? input1Shape.at(0): input1Shape.at(3);//input1 WW
const int outputChannelBlocks = UP_DIV(outputChannel, 4);
const int widthblocks = UP_DIV(width, 4);
const int heightblocks = UP_DIV(height, 4);
mGlobalWorkSize = {static_cast<uint32_t>(widthblocks), static_cast<uint32_t>(heightblocks)};
int idx = 0;
2024-04-19 11:58:21 +08:00
ret |= unit.kernel->get().setArg(idx++, mGlobalWorkSize[0]);
ret |= unit.kernel->get().setArg(idx++, mGlobalWorkSize[1]);
ret |= unit.kernel->get().setArg(idx++, openCLBuffer(input0));
ret |= unit.kernel->get().setArg(idx++, openCLBuffer(input1));
if(inputs.size() > 2) {
2024-04-19 11:58:21 +08:00
ret |= unit.kernel->get().setArg(idx++, openCLBuffer(inputs[2]));
}
2024-04-19 11:58:21 +08:00
ret |= unit.kernel->get().setArg(idx++, openCLBuffer(output));
ret |= unit.kernel->get().setArg(idx++, static_cast<int>(outputChannel));
ret |= unit.kernel->get().setArg(idx++, static_cast<int>(outputChannelBlocks));
ret |= unit.kernel->get().setArg(idx++, static_cast<int>(height));
ret |= unit.kernel->get().setArg(idx++, static_cast<int>(heightblocks));
ret |= unit.kernel->get().setArg(idx++, static_cast<int>(widthblocks));
ret |= unit.kernel->get().setArg(idx++, static_cast<int>(width));
2023-07-31 14:24:48 +08:00
MNN_CHECK_CL_SUCCESS(ret, "setArg MatMulBufExecution mTransposeA");
2024-04-19 11:58:21 +08:00
mLocalWorkSize = localWS2DDefault(mGlobalWorkSize, mMaxWorkGroupSize, mOpenCLBackend->getOpenCLRuntime(), mKernelName, unit.kernel).first;
}
else {
const int height = input0Shape.at(0);//input0 H
const int outputChannel = input0Shape.at(3);//input0 W
const int width = mTransposeB ? input1Shape.at(0): input1Shape.at(3);//input1 W
const int outputChannelBlocks = UP_DIV(outputChannel, 4);
const int widthblocks = UP_DIV(width, 4);
mGlobalWorkSize = {static_cast<uint32_t>(widthblocks), static_cast<uint32_t>(height)};
int idx = 0;
2024-04-19 11:58:21 +08:00
ret |= unit.kernel->get().setArg(idx++, mGlobalWorkSize[0]);
ret |= unit.kernel->get().setArg(idx++, mGlobalWorkSize[1]);
ret |= unit.kernel->get().setArg(idx++, openCLBuffer(input0));
ret |= unit.kernel->get().setArg(idx++, openCLBuffer(input1));
if(inputs.size() > 2) {
2024-04-19 11:58:21 +08:00
ret |= unit.kernel->get().setArg(idx++, openCLBuffer(inputs[2]));
}
2024-04-19 11:58:21 +08:00
ret |= unit.kernel->get().setArg(idx++, openCLBuffer(output));
ret |= unit.kernel->get().setArg(idx++, static_cast<int>(outputChannel));
ret |= unit.kernel->get().setArg(idx++, static_cast<int>(outputChannelBlocks));
ret |= unit.kernel->get().setArg(idx++, static_cast<int>(widthblocks));
ret |= unit.kernel->get().setArg(idx++, static_cast<int>(width));
2023-07-31 14:24:48 +08:00
MNN_CHECK_CL_SUCCESS(ret, "setArg MatMulBufExecution");
2024-04-19 11:58:21 +08:00
mLocalWorkSize = localWS2DDefault(mGlobalWorkSize, mMaxWorkGroupSize, mOpenCLBackend->getOpenCLRuntime(), mKernelName, unit.kernel).first;
}
2024-04-19 11:58:21 +08:00
mOpenCLBackend->recordKernel2d(unit.kernel, mGlobalWorkSize, mLocalWorkSize);
unit.globalWorkSize = {mGlobalWorkSize[0], mGlobalWorkSize[1]};
unit.localWorkSize = {mLocalWorkSize[0], mLocalWorkSize[1]};
return NO_ERROR;
}
class MatMulBufCreator : public OpenCLBackend::Creator {
public:
virtual Execution *onCreate(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs,
const MNN::Op *op, Backend *backend) const override {
2023-07-31 14:24:48 +08:00
for (int i = 0; i < inputs.size(); ++i) {
TensorUtils::setTensorSupportPack(inputs[i], false);
}
for (int i = 0; i < outputs.size(); ++i) {
TensorUtils::setTensorSupportPack(outputs[i], false);
}
auto param = op->main_as_MatMul();
return new MatMulBufExecution(inputs, op, backend, param->transposeA(), param->transposeB());
}
};
2023-12-27 17:26:44 +08:00
REGISTER_OPENCL_OP_CREATOR(MatMulBufCreator, OpType_MatMul, BUFFER);
} // namespace OpenCL
} // namespace MNN
#endif /* MNN_OPENCL_BUFFER_CLOSED */