MNN/source/shape/ShapeSqueeze.cpp

91 lines
3.0 KiB
C++
Raw Normal View History

2019-04-17 10:49:11 +08:00
//
// ShapeSqueeze.cpp
// MNN
//
// Created by MNN on 2019/01/10.
// Copyright © 2018, Alibaba Group Holding Limited
//
#include "Macro.h"
#include "SizeComputer.hpp"
#include "TensorUtils.hpp"
2019-04-17 10:49:11 +08:00
namespace MNN {
class UnSqueezeSizeComputer : public SizeComputer {
virtual bool onComputeSize(const MNN::Op* op, const std::vector<Tensor*>& inputs,
const std::vector<Tensor*>& outputs) const override {
MNN_ASSERT(1 == inputs.size());
MNN_ASSERT(1 == outputs.size());
const int* squeezeDim = op->main_as_SqueezeParam()->squeezeDims()->data();
const int squeezeDimSize = op->main_as_SqueezeParam()->squeezeDims()->size();
std::set<int> dimSet;
for (int i = 0; i < squeezeDimSize; i++) {
dimSet.insert(squeezeDim[i]);
}
2019-04-17 10:49:11 +08:00
auto& ob = outputs[0]->buffer();
auto ib = inputs[0]->buffer();
ob.dimensions = ib.dimensions + squeezeDimSize;
int oDim = 0;
for (int i = 0; i < ob.dimensions; i++) {
ob.dim[i].extent = 1;
if (dimSet.find(i) == dimSet.end()) {
ob.dim[i].extent = ib.dim[oDim].extent;
oDim++;
}
}
ob.type = inputs[0]->buffer().type;
TensorUtils::getDescribe(outputs[0])->dimensionFormat = TensorUtils::getDescribe(inputs[0])->dimensionFormat;
return true;
}
};
2019-04-17 10:49:11 +08:00
class SqueezeSizeComputer : public SizeComputer {
virtual bool onComputeSize(const MNN::Op* op, const std::vector<Tensor*>& inputs,
const std::vector<Tensor*>& outputs) const override {
MNN_ASSERT(1 == inputs.size());
MNN_ASSERT(1 == outputs.size());
const int* squeezeDim = op->main_as_SqueezeParam()->squeezeDims()->data();
int squeezeDimSize = op->main_as_SqueezeParam()->squeezeDims()->size();
2019-04-17 10:49:11 +08:00
std::set<int> dimSet;
for (int i = 0; i < squeezeDimSize; i++) {
dimSet.insert(squeezeDim[i]);
}
auto& ob = outputs[0]->buffer();
auto ib = inputs[0]->buffer();
if (squeezeDimSize == 0) {
for (int i = 0; i < ib.dimensions; ++i) {
if (ib.dim[i].extent == 1) {
dimSet.insert(i);
++squeezeDimSize;
}
}
}
2019-04-17 10:49:11 +08:00
MNN_ASSERT(squeezeDimSize < ib.dimensions);
ob.dimensions = ib.dimensions - squeezeDimSize;
int oDim = 0;
for (int i = 0; i < ib.dimensions; i++) {
if (dimSet.find(i) == dimSet.end()) {
ob.dim[oDim].extent = ib.dim[i].extent;
oDim++;
}
}
ob.type = inputs[0]->buffer().type;
TensorUtils::getDescribe(outputs[0])->dimensionFormat = TensorUtils::getDescribe(inputs[0])->dimensionFormat;
2019-04-17 10:49:11 +08:00
return true;
}
};
REGISTER_SHAPE(SqueezeSizeComputer, OpType_Squeeze);
REGISTER_SHAPE(UnSqueezeSizeComputer, OpType_Unsqueeze);
2019-04-17 10:49:11 +08:00
} // namespace MNN