MNN/backupcode/cpubackend/CPUBatchMatMul.cpp

90 lines
3.8 KiB
C++
Raw Normal View History

2020-11-05 16:41:56 +08:00
//
// CPUBatchMatMul.cpp
// MNN
//
// Created by MNN on 2019/03/25.
// Copyright © 2018, Alibaba Group Holding Limited
//
#include "backend/cpu/CPUBatchMatMul.hpp"
#include "backend/cpu/CPUBackend.hpp"
#include "math/Matrix.hpp"
namespace MNN {
CPUBatchMatMul::CPUBatchMatMul(Backend* backend, bool adjX, bool adjY) : Execution(backend) {
mMatMul.reset(new CPUMatMul(backend, adjX, adjY, true));
}
ErrorCode CPUBatchMatMul::onResize(const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs) {
auto input0 = inputs[0];
auto input1 = inputs[1];
auto output = outputs[0];
// Fill output by zero if one of inputs is empty.
if (input0->elementSize() == 0 || input1->elementSize() == 0) {
return NO_ERROR;
}
auto dimensions = input0->dimensions();
mMatrixA.reset(Tensor::createDevice<float>({input0->length(input0->dimensions()-2), input0->length(input0->dimensions()-1)}));
mMatrixB.reset(Tensor::createDevice<float>({input1->length(input1->dimensions()-2), input1->length(input0->dimensions()-1)}));
mMatrixC.reset(Tensor::createDevice<float>({output->length(output->dimensions()-2), output->length(output->dimensions()-1)}));
mTempInputs = {mMatrixA.get(), mMatrixB.get()};
mTempOutputs = {mMatrixC.get()};
auto res = backend()->onAcquireBuffer(mMatrixA.get(), Backend::DYNAMIC);
res = res && backend()->onAcquireBuffer(mMatrixB.get(), Backend::DYNAMIC);
res = res && backend()->onAcquireBuffer(mMatrixC.get(), Backend::DYNAMIC);
if (!res) {
return OUT_OF_MEMORY;
}
int batch = 1;
for (int i = 0; i < dimensions - 2; ++i) {
batch *= input0->length(i);
}
mBatch = batch;
auto code = mMatMul->onResize(mTempInputs, mTempOutputs);
backend()->onReleaseBuffer(mMatrixA.get(), Backend::DYNAMIC);
backend()->onReleaseBuffer(mMatrixB.get(), Backend::DYNAMIC);
backend()->onReleaseBuffer(mMatrixC.get(), Backend::DYNAMIC);
return code;
}
ErrorCode CPUBatchMatMul::onExecute(const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs) {
auto input0 = inputs[0];
auto input1 = inputs[1];
auto output = outputs[0];
// Fill output by zero if one of inputs is empty.
if (input0->elementSize() == 0 || input1->elementSize() == 0) {
::memset(output->host<float>(), 0, output->size());
return NO_ERROR;
}
const int dimensions = input0->dimensions();
MNN_ASSERT(dimensions >= 3);
const int input0Stride = input0->length(dimensions - 1) * input0->length(dimensions - 2);
const int input1Stride = input1->length(dimensions - 1) * input1->length(dimensions - 2);
const int outputStride = output->length(dimensions - 1) * output->length(dimensions - 2);
const auto input0Ptr = input0->host<float>();
const auto input1Ptr = input1->host<float>();
float* const outputPtr = output->host<float>();
for (int i = 0; i < mBatch; ++i) {
::memcpy(mMatrixA->host<float>(), input0Ptr + i * input0Stride, input0Stride * sizeof(float));
::memcpy(mMatrixB->host<float>(), input1Ptr + i * input1Stride, input1Stride * sizeof(float));
mMatMul->onExecute(mTempInputs, mTempOutputs);
::memcpy(outputPtr + i * outputStride, mMatrixC->host<float>(), outputStride * sizeof(float));
}
return NO_ERROR;
}
class CPUBatchMatMulCreator : public CPUBackend::Creator {
public:
virtual Execution* onCreate(const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs,
const MNN::Op* op, Backend* backend) const override {
return new CPUBatchMatMul(backend, op->main_as_BatchMatMulParam()->adjX(), op->main_as_BatchMatMulParam()->adjY());
}
};
REGISTER_CPU_OP_CREATOR(CPUBatchMatMulCreator, OpType_BatchMatMul);
} // namespace MNN