mirror of https://github.com/alibaba/MNN.git
90 lines
3.8 KiB
C++
90 lines
3.8 KiB
C++
|
//
|
||
|
// CPUBatchMatMul.cpp
|
||
|
// MNN
|
||
|
//
|
||
|
// Created by MNN on 2019/03/25.
|
||
|
// Copyright © 2018, Alibaba Group Holding Limited
|
||
|
//
|
||
|
|
||
|
#include "backend/cpu/CPUBatchMatMul.hpp"
|
||
|
#include "backend/cpu/CPUBackend.hpp"
|
||
|
#include "math/Matrix.hpp"
|
||
|
|
||
|
namespace MNN {
|
||
|
|
||
|
CPUBatchMatMul::CPUBatchMatMul(Backend* backend, bool adjX, bool adjY) : Execution(backend) {
|
||
|
mMatMul.reset(new CPUMatMul(backend, adjX, adjY, true));
|
||
|
}
|
||
|
|
||
|
ErrorCode CPUBatchMatMul::onResize(const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs) {
|
||
|
auto input0 = inputs[0];
|
||
|
auto input1 = inputs[1];
|
||
|
auto output = outputs[0];
|
||
|
// Fill output by zero if one of inputs is empty.
|
||
|
if (input0->elementSize() == 0 || input1->elementSize() == 0) {
|
||
|
return NO_ERROR;
|
||
|
}
|
||
|
auto dimensions = input0->dimensions();
|
||
|
mMatrixA.reset(Tensor::createDevice<float>({input0->length(input0->dimensions()-2), input0->length(input0->dimensions()-1)}));
|
||
|
mMatrixB.reset(Tensor::createDevice<float>({input1->length(input1->dimensions()-2), input1->length(input0->dimensions()-1)}));
|
||
|
mMatrixC.reset(Tensor::createDevice<float>({output->length(output->dimensions()-2), output->length(output->dimensions()-1)}));
|
||
|
mTempInputs = {mMatrixA.get(), mMatrixB.get()};
|
||
|
mTempOutputs = {mMatrixC.get()};
|
||
|
auto res = backend()->onAcquireBuffer(mMatrixA.get(), Backend::DYNAMIC);
|
||
|
res = res && backend()->onAcquireBuffer(mMatrixB.get(), Backend::DYNAMIC);
|
||
|
res = res && backend()->onAcquireBuffer(mMatrixC.get(), Backend::DYNAMIC);
|
||
|
|
||
|
if (!res) {
|
||
|
return OUT_OF_MEMORY;
|
||
|
}
|
||
|
int batch = 1;
|
||
|
for (int i = 0; i < dimensions - 2; ++i) {
|
||
|
batch *= input0->length(i);
|
||
|
}
|
||
|
mBatch = batch;
|
||
|
auto code = mMatMul->onResize(mTempInputs, mTempOutputs);
|
||
|
backend()->onReleaseBuffer(mMatrixA.get(), Backend::DYNAMIC);
|
||
|
backend()->onReleaseBuffer(mMatrixB.get(), Backend::DYNAMIC);
|
||
|
backend()->onReleaseBuffer(mMatrixC.get(), Backend::DYNAMIC);
|
||
|
return code;
|
||
|
}
|
||
|
|
||
|
ErrorCode CPUBatchMatMul::onExecute(const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs) {
|
||
|
auto input0 = inputs[0];
|
||
|
auto input1 = inputs[1];
|
||
|
auto output = outputs[0];
|
||
|
// Fill output by zero if one of inputs is empty.
|
||
|
if (input0->elementSize() == 0 || input1->elementSize() == 0) {
|
||
|
::memset(output->host<float>(), 0, output->size());
|
||
|
return NO_ERROR;
|
||
|
}
|
||
|
const int dimensions = input0->dimensions();
|
||
|
MNN_ASSERT(dimensions >= 3);
|
||
|
const int input0Stride = input0->length(dimensions - 1) * input0->length(dimensions - 2);
|
||
|
const int input1Stride = input1->length(dimensions - 1) * input1->length(dimensions - 2);
|
||
|
const int outputStride = output->length(dimensions - 1) * output->length(dimensions - 2);
|
||
|
const auto input0Ptr = input0->host<float>();
|
||
|
const auto input1Ptr = input1->host<float>();
|
||
|
float* const outputPtr = output->host<float>();
|
||
|
|
||
|
for (int i = 0; i < mBatch; ++i) {
|
||
|
::memcpy(mMatrixA->host<float>(), input0Ptr + i * input0Stride, input0Stride * sizeof(float));
|
||
|
::memcpy(mMatrixB->host<float>(), input1Ptr + i * input1Stride, input1Stride * sizeof(float));
|
||
|
mMatMul->onExecute(mTempInputs, mTempOutputs);
|
||
|
::memcpy(outputPtr + i * outputStride, mMatrixC->host<float>(), outputStride * sizeof(float));
|
||
|
}
|
||
|
return NO_ERROR;
|
||
|
}
|
||
|
|
||
|
class CPUBatchMatMulCreator : public CPUBackend::Creator {
|
||
|
public:
|
||
|
virtual Execution* onCreate(const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs,
|
||
|
const MNN::Op* op, Backend* backend) const override {
|
||
|
return new CPUBatchMatMul(backend, op->main_as_BatchMatMulParam()->adjX(), op->main_as_BatchMatMulParam()->adjY());
|
||
|
}
|
||
|
};
|
||
|
|
||
|
REGISTER_CPU_OP_CREATOR(CPUBatchMatMulCreator, OpType_BatchMatMul);
|
||
|
|
||
|
} // namespace MNN
|