MNN/demo/exec/expressDemo.cpp

99 lines
2.7 KiB
C++
Raw Normal View History

2019-12-27 22:16:57 +08:00
#include <MNN/expr/Expr.hpp>
#include <MNN/expr/ExprCreator.hpp>
#include <MNN/expr/Executor.hpp>
#include <string>
#include <map>
#include <fstream>
#include <sstream>
#define MNN_OPEN_TIME_TRACE
2019-12-27 22:16:57 +08:00
#include <MNN/AutoTime.hpp>
using namespace MNN::Express;
#define UP_DIV(x) (((x)+3)/4)
int main(int argc, const char* argv[]) {
if (argc < 2) {
MNN_ERROR("./expressDemo.out model_path type testTime\n");
return 0;
}
auto modelFileName = argv[1];
FUNC_PRINT_ALL(modelFileName, s);
auto exe = Executor::getGlobalExecutor();
MNN::BackendConfig config;
config.precision = MNN::BackendConfig::Precision_Low;
MNNForwardType forwardType = MNN_FORWARD_CPU;
if (argc >= 3) {
forwardType = (MNNForwardType)atoi(argv[2]);
}
exe->setGlobalExecutorConfig(forwardType, config, 4);
- build: - unify schema building in core and converter; - add more build script for android; - add linux build script for python; - ops impl: - add floor mod support in binary; - use eltwise impl in add/max/sub/mul binary for optimization; - remove fake double support in cast; - fix 5d support for concat; - add adjX and adjY support for batch matmul; - optimize conv2d back prop filter; - add pad mode support for conv3d; - fix bug in conv2d & conv depthwise with very small feature map; - optimize binary without broacast; - add data types support for gather; - add gather ND support; - use uint8 data type in gather v2; - add transpose support for matmul; - add matrix band part; - add dim != 4 support for padding, reshape & tensor convert; - add pad type support for pool3d; - make ops based on TensorFlow Lite quantization optional; - add all & any support for reduction; - use type in parameter as output type in reduction; - add int support for unary; - add variable weight support for conv2d; - fix conv2d depthwise weights initialization; - fix type support for transpose; - fix grad outputs count for reduce grad and reshape grad; - fix priorbox & detection output; - fix metal softmax error; - python: - add runSessionWithCallBackInfo interface; - add max nodes limit (1400) for visualization tool; - fix save error in python3; - align default dim; - convert: - add extra design for optimization; - add more post converting optimizers; - add caffe v1 weights blob support; - add cast, unary, conv transpose support for onnx model; - optimize batchnorm, conv with variable weights, prelu, reshape, slice, upsample for onnx model; - add cos/sin/atan/tan support for unary for tensorflow model; - add any/all support for reduction for tensorflow model; - add elu, conv3d, pool3d support for tensorflow model; - optimize argmax, batchnorm, concat, batch to space, conv with variable weights, prelu, slice for tensorflow model; - others: - fix size computer lock; - fix thread pool deadlock; - add express & parameters in express; - rewrite blitter chooser without static map; - add tests for expr;
2019-10-29 13:37:26 +08:00
auto model = Variable::loadMap(modelFileName);
auto inputOutput = Variable::getInputAndOutput(model);
auto inputs = inputOutput.first;
auto outputs = inputOutput.second;
int testTime = 10;
if (argc >= 4) {
testTime = atoi(argv[3]);
}
- build: - unify schema building in core and converter; - add more build script for android; - add linux build script for python; - ops impl: - add floor mod support in binary; - use eltwise impl in add/max/sub/mul binary for optimization; - remove fake double support in cast; - fix 5d support for concat; - add adjX and adjY support for batch matmul; - optimize conv2d back prop filter; - add pad mode support for conv3d; - fix bug in conv2d & conv depthwise with very small feature map; - optimize binary without broacast; - add data types support for gather; - add gather ND support; - use uint8 data type in gather v2; - add transpose support for matmul; - add matrix band part; - add dim != 4 support for padding, reshape & tensor convert; - add pad type support for pool3d; - make ops based on TensorFlow Lite quantization optional; - add all & any support for reduction; - use type in parameter as output type in reduction; - add int support for unary; - add variable weight support for conv2d; - fix conv2d depthwise weights initialization; - fix type support for transpose; - fix grad outputs count for reduce grad and reshape grad; - fix priorbox & detection output; - fix metal softmax error; - python: - add runSessionWithCallBackInfo interface; - add max nodes limit (1400) for visualization tool; - fix save error in python3; - align default dim; - convert: - add extra design for optimization; - add more post converting optimizers; - add caffe v1 weights blob support; - add cast, unary, conv transpose support for onnx model; - optimize batchnorm, conv with variable weights, prelu, reshape, slice, upsample for onnx model; - add cos/sin/atan/tan support for unary for tensorflow model; - add any/all support for reduction for tensorflow model; - add elu, conv3d, pool3d support for tensorflow model; - optimize argmax, batchnorm, concat, batch to space, conv with variable weights, prelu, slice for tensorflow model; - others: - fix size computer lock; - fix thread pool deadlock; - add express & parameters in express; - rewrite blitter chooser without static map; - add tests for expr;
2019-10-29 13:37:26 +08:00
auto input = inputs.begin()->second;
auto output = outputs.begin()->second;
//input->resize({1, 224, 224, 3});
auto inputInfo = input->getInfo();
if (nullptr == inputInfo) {
return 0;
}
{
AUTOTIME;
input = _ChangeInputFormat(input, NCHW);
inputInfo = input->getInfo();
if (output->getInfo()->order == NC4HW4) {
output = _Convert(output, NCHW);
}
}
auto outputInfo = output->getInfo();
if (nullptr == outputInfo) {
MNN_ERROR("Output Not valid\n");
return 0;
}
//Test Speed
if (testTime > 0){
//Let the frequence up
for (int i=0; i<3; ++i) {
input->writeMap<float>();
input->unMap();
output->readMap<float>();
output->unMap();
}
AUTOTIME;
for (int i=0; i<testTime; ++i) {
input->writeMap<float>();
input->unMap();
output->readMap<float>();
output->unMap();
}
}
{
auto size = inputInfo->size;
auto inputPtr = input->writeMap<float>();
std::ifstream inputOs("input_0.txt");
for (int i=0; i<size; ++i) {
inputOs >> inputPtr[i];
}
input->unMap();
}
2019-12-27 22:16:57 +08:00
{
2020-11-05 16:41:56 +08:00
auto size = outputInfo->size;
auto outputPtr = output->readMap<float>();
if (nullptr == outputPtr) {
MNN_ERROR("Output Not valid read error\n");
return 0;
}
std::ofstream outputOs("output.txt");
for (int i=0; i<size; ++i) {
outputOs << outputPtr[i] << "\n";
}
output->unMap();
}
return 0;
}