2019-04-17 10:49:11 +08:00
|
|
|
//
|
|
|
|
|
// CPUPack.cpp
|
|
|
|
|
// MNN
|
|
|
|
|
//
|
|
|
|
|
// Created by MNN on 2018/08/14.
|
|
|
|
|
// Copyright © 2018, Alibaba Group Holding Limited
|
|
|
|
|
//
|
|
|
|
|
|
2019-12-27 22:16:57 +08:00
|
|
|
#include "backend/cpu/CPUPack.hpp"
|
|
|
|
|
#include "backend/cpu/CPUBackend.hpp"
|
2019-04-17 10:49:11 +08:00
|
|
|
|
|
|
|
|
namespace MNN {
|
|
|
|
|
|
- build:
- unify schema building in core and converter;
- add more build script for android;
- add linux build script for python;
- ops impl:
- add floor mod support in binary;
- use eltwise impl in add/max/sub/mul binary for optimization;
- remove fake double support in cast;
- fix 5d support for concat;
- add adjX and adjY support for batch matmul;
- optimize conv2d back prop filter;
- add pad mode support for conv3d;
- fix bug in conv2d & conv depthwise with very small feature map;
- optimize binary without broacast;
- add data types support for gather;
- add gather ND support;
- use uint8 data type in gather v2;
- add transpose support for matmul;
- add matrix band part;
- add dim != 4 support for padding, reshape & tensor convert;
- add pad type support for pool3d;
- make ops based on TensorFlow Lite quantization optional;
- add all & any support for reduction;
- use type in parameter as output type in reduction;
- add int support for unary;
- add variable weight support for conv2d;
- fix conv2d depthwise weights initialization;
- fix type support for transpose;
- fix grad outputs count for reduce grad and reshape grad;
- fix priorbox & detection output;
- fix metal softmax error;
- python:
- add runSessionWithCallBackInfo interface;
- add max nodes limit (1400) for visualization tool;
- fix save error in python3;
- align default dim;
- convert:
- add extra design for optimization;
- add more post converting optimizers;
- add caffe v1 weights blob support;
- add cast, unary, conv transpose support for onnx model;
- optimize batchnorm, conv with variable weights, prelu, reshape, slice, upsample for onnx model;
- add cos/sin/atan/tan support for unary for tensorflow model;
- add any/all support for reduction for tensorflow model;
- add elu, conv3d, pool3d support for tensorflow model;
- optimize argmax, batchnorm, concat, batch to space, conv with variable weights, prelu, slice for tensorflow model;
- others:
- fix size computer lock;
- fix thread pool deadlock;
- add express & parameters in express;
- rewrite blitter chooser without static map;
- add tests for expr;
2019-10-29 13:37:26 +08:00
|
|
|
CPUPack::CPUPack(Backend *backend, int axis)
|
|
|
|
|
: Execution(backend), mAxis(axis) {
|
2019-04-17 10:49:11 +08:00
|
|
|
// nothing to do
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
template <typename T>
|
|
|
|
|
ErrorCode CPUPack::MNNPackLayerForward(const std::vector<MNN::Tensor *> &inputs,
|
|
|
|
|
const std::vector<MNN::Tensor *> &outputs) {
|
|
|
|
|
auto output = outputs[0];
|
|
|
|
|
const int outputDimensions = output->buffer().dimensions;
|
|
|
|
|
auto mN = inputs.size();
|
|
|
|
|
|
|
|
|
|
if (mAxis == 0) {
|
- build:
- unify schema building in core and converter;
- add more build script for android;
- add linux build script for python;
- ops impl:
- add floor mod support in binary;
- use eltwise impl in add/max/sub/mul binary for optimization;
- remove fake double support in cast;
- fix 5d support for concat;
- add adjX and adjY support for batch matmul;
- optimize conv2d back prop filter;
- add pad mode support for conv3d;
- fix bug in conv2d & conv depthwise with very small feature map;
- optimize binary without broacast;
- add data types support for gather;
- add gather ND support;
- use uint8 data type in gather v2;
- add transpose support for matmul;
- add matrix band part;
- add dim != 4 support for padding, reshape & tensor convert;
- add pad type support for pool3d;
- make ops based on TensorFlow Lite quantization optional;
- add all & any support for reduction;
- use type in parameter as output type in reduction;
- add int support for unary;
- add variable weight support for conv2d;
- fix conv2d depthwise weights initialization;
- fix type support for transpose;
- fix grad outputs count for reduce grad and reshape grad;
- fix priorbox & detection output;
- fix metal softmax error;
- python:
- add runSessionWithCallBackInfo interface;
- add max nodes limit (1400) for visualization tool;
- fix save error in python3;
- align default dim;
- convert:
- add extra design for optimization;
- add more post converting optimizers;
- add caffe v1 weights blob support;
- add cast, unary, conv transpose support for onnx model;
- optimize batchnorm, conv with variable weights, prelu, reshape, slice, upsample for onnx model;
- add cos/sin/atan/tan support for unary for tensorflow model;
- add any/all support for reduction for tensorflow model;
- add elu, conv3d, pool3d support for tensorflow model;
- optimize argmax, batchnorm, concat, batch to space, conv with variable weights, prelu, slice for tensorflow model;
- others:
- fix size computer lock;
- fix thread pool deadlock;
- add express & parameters in express;
- rewrite blitter chooser without static map;
- add tests for expr;
2019-10-29 13:37:26 +08:00
|
|
|
auto dstPtr = outputs[0]->buffer().host;
|
2019-04-17 10:49:11 +08:00
|
|
|
for (int i = 0; i < mN; i++) {
|
|
|
|
|
auto inputX = inputs[i];
|
|
|
|
|
auto sourcePtr = inputX->buffer().host;
|
|
|
|
|
memcpy(dstPtr, sourcePtr, inputX->size());
|
|
|
|
|
dstPtr += inputX->size();
|
|
|
|
|
}
|
|
|
|
|
} else {
|
|
|
|
|
int outputDataCount = 1;
|
|
|
|
|
for (int i = 0; i < outputDimensions; i++) {
|
|
|
|
|
outputDataCount *= output->buffer().dim[i].extent;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
int r;
|
2019-06-10 21:08:55 +08:00
|
|
|
for (int offset = 0, cordOnAxis = 0; offset < outputDataCount; offset++) {
|
2019-04-17 10:49:11 +08:00
|
|
|
r = offset;
|
|
|
|
|
int inputOffset = 0;
|
2019-06-10 21:08:55 +08:00
|
|
|
for (int i = 0, j = 0, cord; i < outputDimensions; i++) {
|
|
|
|
|
cord = r / output->buffer().dim[i].stride;
|
2019-04-17 10:49:11 +08:00
|
|
|
r = r % output->buffer().dim[i].stride;
|
|
|
|
|
|
|
|
|
|
if (i != mAxis) {
|
2019-06-10 21:08:55 +08:00
|
|
|
inputOffset += (cord * inputs[0]->buffer().dim[j++].stride);
|
|
|
|
|
} else {
|
|
|
|
|
cordOnAxis = cord;
|
2019-04-17 10:49:11 +08:00
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
2019-06-10 21:08:55 +08:00
|
|
|
((T *)output->buffer().host)[offset] = ((T *)inputs[cordOnAxis]->buffer().host)[inputOffset];
|
2019-04-17 10:49:11 +08:00
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
return NO_ERROR;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
ErrorCode CPUPack::onExecute(const std::vector<MNN::Tensor *> &inputs, const std::vector<MNN::Tensor *> &outputs) {
|
|
|
|
|
auto input = inputs[0];
|
|
|
|
|
auto output = outputs[0];
|
|
|
|
|
|
|
|
|
|
if (inputs.size() == 1) {
|
|
|
|
|
::memcpy(output->buffer().host, input->buffer().host, input->size());
|
|
|
|
|
return NO_ERROR;
|
|
|
|
|
}
|
|
|
|
|
|
- build:
- unify schema building in core and converter;
- add more build script for android;
- add linux build script for python;
- ops impl:
- add floor mod support in binary;
- use eltwise impl in add/max/sub/mul binary for optimization;
- remove fake double support in cast;
- fix 5d support for concat;
- add adjX and adjY support for batch matmul;
- optimize conv2d back prop filter;
- add pad mode support for conv3d;
- fix bug in conv2d & conv depthwise with very small feature map;
- optimize binary without broacast;
- add data types support for gather;
- add gather ND support;
- use uint8 data type in gather v2;
- add transpose support for matmul;
- add matrix band part;
- add dim != 4 support for padding, reshape & tensor convert;
- add pad type support for pool3d;
- make ops based on TensorFlow Lite quantization optional;
- add all & any support for reduction;
- use type in parameter as output type in reduction;
- add int support for unary;
- add variable weight support for conv2d;
- fix conv2d depthwise weights initialization;
- fix type support for transpose;
- fix grad outputs count for reduce grad and reshape grad;
- fix priorbox & detection output;
- fix metal softmax error;
- python:
- add runSessionWithCallBackInfo interface;
- add max nodes limit (1400) for visualization tool;
- fix save error in python3;
- align default dim;
- convert:
- add extra design for optimization;
- add more post converting optimizers;
- add caffe v1 weights blob support;
- add cast, unary, conv transpose support for onnx model;
- optimize batchnorm, conv with variable weights, prelu, reshape, slice, upsample for onnx model;
- add cos/sin/atan/tan support for unary for tensorflow model;
- add any/all support for reduction for tensorflow model;
- add elu, conv3d, pool3d support for tensorflow model;
- optimize argmax, batchnorm, concat, batch to space, conv with variable weights, prelu, slice for tensorflow model;
- others:
- fix size computer lock;
- fix thread pool deadlock;
- add express & parameters in express;
- rewrite blitter chooser without static map;
- add tests for expr;
2019-10-29 13:37:26 +08:00
|
|
|
return MNNPackLayerForward<int32_t>(inputs, outputs);
|
2019-04-17 10:49:11 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
|
|
class CPUPackCreator : public CPUBackend::Creator {
|
|
|
|
|
public:
|
|
|
|
|
virtual Execution *onCreate(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs,
|
|
|
|
|
const MNN::Op *op, Backend *backend) const {
|
|
|
|
|
auto pack = op->main_as_PackParam();
|
- build:
- unify schema building in core and converter;
- add more build script for android;
- add linux build script for python;
- ops impl:
- add floor mod support in binary;
- use eltwise impl in add/max/sub/mul binary for optimization;
- remove fake double support in cast;
- fix 5d support for concat;
- add adjX and adjY support for batch matmul;
- optimize conv2d back prop filter;
- add pad mode support for conv3d;
- fix bug in conv2d & conv depthwise with very small feature map;
- optimize binary without broacast;
- add data types support for gather;
- add gather ND support;
- use uint8 data type in gather v2;
- add transpose support for matmul;
- add matrix band part;
- add dim != 4 support for padding, reshape & tensor convert;
- add pad type support for pool3d;
- make ops based on TensorFlow Lite quantization optional;
- add all & any support for reduction;
- use type in parameter as output type in reduction;
- add int support for unary;
- add variable weight support for conv2d;
- fix conv2d depthwise weights initialization;
- fix type support for transpose;
- fix grad outputs count for reduce grad and reshape grad;
- fix priorbox & detection output;
- fix metal softmax error;
- python:
- add runSessionWithCallBackInfo interface;
- add max nodes limit (1400) for visualization tool;
- fix save error in python3;
- align default dim;
- convert:
- add extra design for optimization;
- add more post converting optimizers;
- add caffe v1 weights blob support;
- add cast, unary, conv transpose support for onnx model;
- optimize batchnorm, conv with variable weights, prelu, reshape, slice, upsample for onnx model;
- add cos/sin/atan/tan support for unary for tensorflow model;
- add any/all support for reduction for tensorflow model;
- add elu, conv3d, pool3d support for tensorflow model;
- optimize argmax, batchnorm, concat, batch to space, conv with variable weights, prelu, slice for tensorflow model;
- others:
- fix size computer lock;
- fix thread pool deadlock;
- add express & parameters in express;
- rewrite blitter chooser without static map;
- add tests for expr;
2019-10-29 13:37:26 +08:00
|
|
|
return new CPUPack(backend, pack->axis());
|
2019-04-17 10:49:11 +08:00
|
|
|
}
|
|
|
|
|
};
|
|
|
|
|
REGISTER_CPU_OP_CREATOR(CPUPackCreator, OpType_Pack);
|
|
|
|
|
} // namespace MNN
|