MNN/source/backend/opencl/execution/image/FuseExecution.cpp

115 lines
4.0 KiB
C++
Raw Normal View History

2023-02-15 10:30:27 +08:00
//
// FuseExecution.cpp
// MNN
//
// Created by MNN on 2022/11/02.
// Copyright © 2018, Alibaba Group Holding Limited
//
#include "backend/opencl/execution/image/FuseExecution.hpp"
#include "core/Macro.h"
#include "backend/opencl/core/OpenCLRunningUtils.hpp"
namespace MNN {
namespace OpenCL {
FuseExecution::FuseExecution(const std::vector<Tensor *> &inputs, Backend *backend, const Op* op)
: Execution(backend) {
mOpenCLBackend = static_cast<OpenCLBackend *>(backend);
buildFuseKernel(op);
}
bool FuseExecution::buildFuseKernel(const Op* op) {
auto runtime = mOpenCLBackend->getOpenCLRuntime();
if (mKernel.get() == nullptr) {
std::set<std::string> buildOptions;
std::string kernelName;
auto extra = op->main_as_Extra();
auto source = reinterpret_cast<const char*>(extra->info()->data());
auto name = extra->type()->c_str();
mKernelName = extra->type()->str();
mKernel = runtime->buildKernelFromSource(source, name, buildOptions);
mMaxWorkGroupSize = static_cast<uint32_t>(runtime->getMaxWorkGroupSize(mKernel));
}
return true;
}
ErrorCode FuseExecution::onResize(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs) {
2023-06-16 09:42:45 +08:00
startRecord(mOpenCLBackend->getOpenCLRuntime(), mRecording);
2023-02-15 10:30:27 +08:00
Tensor *input = inputs[0];
Tensor *output = outputs[0];
std::vector<int> inputShape = tensorShapeFormat(input);
std::vector<int> outputShape = tensorShapeFormat(output);
const int outputBatch = outputShape.at(0);
const int outputHeight = outputShape.at(1);
const int outputWidth = outputShape.at(2);
const int outputChannels = outputShape.at(3);
const int channelBlocks = UP_DIV(outputChannels, 4);
const int remainChannels = channelBlocks * 4 - outputChannels;
mGlobalWorkSize = {
static_cast<uint32_t>(channelBlocks),
static_cast<uint32_t>(outputWidth),
static_cast<uint32_t>(outputHeight * outputBatch)
};
uint32_t idx = 0;
for (auto input : inputs) {
mKernel.setArg(idx++, openCLImage(input));
}
for (auto output : outputs) {
mKernel.setArg(idx++, openCLImage(output));
}
mKernel.setArg(idx++, mGlobalWorkSize[0]);
mKernel.setArg(idx++, mGlobalWorkSize[1]);
mKernel.setArg(idx++, mGlobalWorkSize[2]);
2023-07-18 09:36:26 +08:00
2023-02-15 10:30:27 +08:00
mLocalWorkSize = localWS3DDefault(mGlobalWorkSize, mMaxWorkGroupSize, mOpenCLBackend->getOpenCLRuntime(), mKernelName, mKernel).first;
2023-06-16 09:42:45 +08:00
recordKernel3d(mKernel, mGlobalWorkSize, mLocalWorkSize, mOpenCLBackend->getOpenCLRuntime());
endRecord(mOpenCLBackend->getOpenCLRuntime(), mRecording);
2023-02-15 10:30:27 +08:00
return NO_ERROR;
}
ErrorCode FuseExecution::onExecute(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs) {
#ifdef LOG_VERBOSE
MNN_PRINT("start FuseExecution onExecute !\n");
#endif
#ifdef ENABLE_OPENCL_TIME_PROFILER
cl::Event event;
run3DKernelDefault(mKernel, mGlobalWorkSize, mLocalWorkSize,
mOpenCLBackend->getOpenCLRuntime(), &event);
int costTime = (int)mOpenCLBackend->getOpenCLRuntime()->getCostTime(&event);
MNN_PRINT("kernel cost:%d us Fuse\n",costTime);
#else
2023-06-16 09:42:45 +08:00
if(mOpenCLBackend->getOpenCLRuntime()->isUseRecordQueue()){
mOpenCLBackend->getOpenCLRuntime()->getRecordings()->emplace_back(mRecording);
#ifdef LOG_VERBOSE
MNN_PRINT("end SoftmaxExecution onExecute !\n");
#endif
return NO_ERROR;
}
2023-02-15 10:30:27 +08:00
run3DKernelDefault(mKernel, mGlobalWorkSize, mLocalWorkSize, mOpenCLBackend->getOpenCLRuntime());
#endif
#ifdef LOG_VERBOSE
MNN_PRINT("end SoftmaxExecution onExecute !\n");
#endif
return NO_ERROR;
}
class FuseCreator : public OpenCLBackend::Creator {
public:
virtual Execution *onCreate(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs,
const MNN::Op *op, Backend *backend) const override {
return new FuseExecution(inputs, backend, op);
}
};
OpenCLCreatorRegister<FuseCreator> __Fuse_op(OpType_Extra, IMAGE);
} // namespace OpenCL
} // namespace MNN