MNN/express/Expr.cpp

877 lines
28 KiB
C++
Raw Normal View History

2019-12-27 22:16:57 +08:00
//
// Expr.cpp
// MNN
//
// Created by MNN on 2019/06/10.
// Copyright © 2018, Alibaba Group Holding Limited
//
#define FLATBUFFERS_PREFER_PRINTF
#include <MNN/expr/Expr.hpp>
#include <MNN/expr/ExprCreator.hpp>
#include <map>
#include "core/MNNMemoryUtils.h"
#include "Utils.hpp"
#include <map>
#include "core/FileLoader.hpp"
#include <MNN/expr/Executor.hpp>
#include "flatbuffers/util.h"
#include "MNN_generated.h"
#define MNN_OPEN_TIME_TRACE
#include "MNN/AutoTime.hpp"
//#define MNN_EXPRESS_ERROR_REPORT
static inline std::string numberToString(int index) {
return flatbuffers::NumToString(index);
}
namespace MNN {
namespace Express {
void Variable::Info::syncSize() {
size = 1;
for (int i=0; i<dim.size(); ++i) {
if (order == NC4HW4 && i == 1) {
size *= (UP_DIV(dim[1], 4) * 4);
} else {
size *= dim[i];
}
}
}
bool VARP::fix(VARP::InputType type) const {
if (nullptr == mContent->expr().first->get()) {
mContent->expr().first->mType = type;
return true;
}
auto info = mContent->getInfo();
if (nullptr == info) {
return false;
}
VARP newVar;
switch (type) {
case INPUT: {
newVar = _Input(info->dim, info->order, info->type);
auto ptr = mContent->readMap<void>();
if (nullptr != ptr) {
auto dstPtr = newVar->writeMap<void>();
::memcpy(dstPtr, ptr, info->size * info->type.bytes());
}
break;
}
case CONST: {
auto ptr = mContent->readMap<void>();
if (nullptr == ptr) {
return false;
}
newVar = _Const(ptr, info->dim, info->order, info->type);
break;
}
case TRAINABLE: {
auto ptr = mContent->readMap<void>();
if (nullptr == ptr) {
return false;
}
newVar = _TrainableParam(ptr, info->dim, info->order, info->type);
break;
}
default:
return false;
}
auto temp = VARP(mContent);
Variable::replace(temp, newVar);
return true;
}
struct Expr::Inside {
std::vector<const Variable::Info*> mInputInfos;
std::vector<Variable::Info> mOutputInfos;
Executor::Requirement mReq;
};
Expr::Expr(int outputSize) {
mInside.reset(new Inside);
mInside->mOutputInfos.resize(outputSize);
mOutputNames.resize(outputSize);
}
Expr::~Expr() {
Executor::getGlobalExecutor()->recycle(this);
mInside.reset();
}
void Expr::set(const OpT* op) {
MNN_ASSERT(nullptr != op);
flatbuffers::FlatBufferBuilder builder;
auto offset = Op::Pack(builder, op);
builder.Finish(offset);
mExtraBuffer.reset(new char[builder.GetSize()]);
::memcpy(mExtraBuffer.get(), builder.GetBufferPointer(), builder.GetSize());
mOp = flatbuffers::GetMutableRoot<Op>(mExtraBuffer.get());
mOpBufferSize = builder.GetSize();
mContentDirty = true;
mInfoDirty = true;
}
Variable::Info* Expr::outputInfo(int index) {
return mInside->mOutputInfos.data() + index;
}
void Expr::_addLinkForInputs(EXPRP expr) {
auto inputs = expr->inputs();
for (int i=0; i<inputs.size(); ++i) {
bool findEmpty = false;
auto inputExpr = inputs[i]->mFrom;
for (int j=0; j<inputExpr->mTo.size(); ++j) {
auto ref = inputExpr->mTo[j].lock();
if (nullptr == ref) {
inputExpr->mTo[j] = WeakEXPRP(expr);
findEmpty = true;
break;
}
}
if (!findEmpty) {
inputExpr->mTo.emplace_back(WeakEXPRP(expr));
}
}
}
EXPRP Expr::create(Variable::Info&& info) {
EXPRP expr(new Expr(1));
expr->mOp = nullptr;
auto originPtr = info.ptr;
expr->mInside->mOutputInfos[0] = std::move(info);
auto& dstInfo = expr->mInside->mOutputInfos[0];
dstInfo.syncSize();
if (dstInfo.size > 0) {
expr->mExtraBuffer.reset(new char[dstInfo.size * dstInfo.type.bytes()]);
expr->mInside->mOutputInfos[0].ptr = expr->mExtraBuffer.get();
expr->mInfoDirty = false;
} else {
expr->mInside->mOutputInfos[0].ptr = nullptr;
expr->mInfoDirty = true;
}
if (nullptr == originPtr) {
expr->mType = VARP::INPUT;
expr->mContentDirty = true;
return expr;
}
expr->mType = VARP::CONST;
expr->mContentDirty = false;
::memcpy(expr->mInside->mOutputInfos[0].ptr, originPtr, dstInfo.size * dstInfo.type.bytes());
return expr;
}
EXPRP Expr::create(const OpT* op, std::vector<VARP> inputs, int outputSize) {
EXPRP expr(new Expr(outputSize));
if (OpType_Input == op->type) {
Variable::Info info;
info.dim = op->main.AsInput()->dims;
if (info.dim.size() >= 1 && -1 == info.dim[0]) {
info.dim[0] = 1;
}
info.order = Utils::revertFormat(op->main.AsInput()->dformat);
info.ptr = nullptr;
info.type = Utils::revertDataType(op->main.AsInput()->dtype);
return create(std::move(info));
}
if (OpType_Const == op->type || OpType_TrainableParam == op->type) {
Variable::Info info;
info.dim = op->main.AsBlob()->dims;
info.order = Utils::revertFormat(op->main.AsBlob()->dataFormat);
info.ptr = nullptr;
info.type = Utils::revertDataType(op->main.AsBlob()->dataType);
switch (op->main.AsBlob()->dataType) {
case DataType_DT_INT8:
info.ptr = (void*)op->main.AsBlob()->int8s.data();
break;
case DataType_DT_INT32:
info.ptr = (void*)op->main.AsBlob()->int32s.data();
break;
case DataType_DT_UINT8:
info.ptr = (void*)op->main.AsBlob()->uint8s.data();
break;
case DataType_DT_FLOAT:
info.ptr = (void*)op->main.AsBlob()->float32s.data();
break;
default:
break;
}
auto expr = create(std::move(info));
if (OpType_TrainableParam == op->type) {
expr->mType = VARP::TRAINABLE;
}
return expr;
}
expr->set(op);
expr->mInputs = std::move(inputs);
_addLinkForInputs(expr);
return expr;
}
void Expr::setName(const std::string& name) {
mName = name;
}
bool Expr::requireInfo() {
if (nullptr == mOp) {
return true;
}
if (!mInfoDirty) {
return true;
}
if (!mValid) {
return false;
}
bool ready = true;
mInside->mInputInfos.resize(mInputs.size());
if (mInside->mReq.shapeNeedContent.empty()) {
mInside->mReq = Executor::getGlobalExecutor()->onGetRequirement(this);
}
for (int i = 0; i < mInputs.size(); ++i) {
if (nullptr == mInputs[i] || nullptr == mInputs[i]->mFrom) {
// The Variable is set nullptr by api
return false;
}
mInside->mInputInfos[i] = mInputs[i]->getInfo();
if (nullptr == mInside->mInputInfos[i] && (!mInside->mReq.supportError[i])) {
#ifdef MNN_EXPRESS_ERROR_REPORT
MNN_ERROR("%s, %d input not ready\n", mName.c_str(), i);
#endif
mValid = false;
return false;
}
}
for (int i = 0; i < mInputs.size(); ++i) {
auto& v = mInputs[i];
if (mInside->mReq.shapeNeedContent[i]) {
auto res = v->expr().first->requireCompute();
if (!res) {
#ifdef MNN_EXPRESS_ERROR_REPORT
MNN_ERROR("%s, Error for compute shape %d\n", mName.c_str(), i);
#endif
ready = false;
mValid = false;
break;
}
}
}
if (!ready) {
return false;
}
//MNN_PRINT("Info %s, %p Start\n", mName.c_str(), this);
auto res = Executor::getGlobalExecutor()->onComputeInfo(this);
//MNN_PRINT("Info Compute %s\n", mName.c_str());
if (NO_ERROR == res) {
mInfoDirty = false;
} else {
mValid = false;
}
return NO_ERROR == res;
}
bool Expr::requireCompute() {
if (nullptr == mOp) {
if (mType == VARP::INPUT) {
return !mContentDirty;
}
return true;
}
if ((!mContentDirty) && mValid) {
return true;
}
if (!mValid) {
return false;
}
#ifdef DEBUG_OVERFLOW
if (mTo.size() > 1) {
if (mName.size() > 0) {
MNN_PRINT("output: %d, type:%s, name: %s\n", mTo.size(), EnumNameOpType(mOp->type()), mName.c_str());
} else {
MNN_PRINT("output: %d, type:%s\n", mTo.size(), EnumNameOpType(mOp->type()));
}
for (auto t : mTo) {
auto tp = t.lock();
if (nullptr == tp) {
MNN_PRINT("nullptr\t");
} else {
MNN_PRINT("%s\n", EnumNameOpType(tp->get()->type()));
}
}
MNN_PRINT("\n");
//FUNC_PRINT(mTo.size());
}
#endif
bool res = requireInfo();
if (!res) {
return false;
}
for (int i = 0; i < mInputs.size(); ++i) {
if (mInside->mReq.contentNeedContent[i]) {
auto& input = mInputs[i];
auto expr = input->expr().first;
res = expr->requireCompute();
if (!res) {
#ifdef MNN_EXPRESS_ERROR_REPORT
MNN_ERROR("%s compute input %d error , \n", mName.c_str(), i);
#endif
if (!mInside->mReq.supportError[i]) {
mValid = false;
return false;
}
}
}
}
auto code = Executor::getGlobalExecutor()->onComputeContent(this);
//MNN_PRINT("Compute %s, %p End\n", mName.c_str(), this);
res = code == NO_ERROR;
if (!res) {
#ifdef MNN_EXPRESS_ERROR_REPORT
MNN_ERROR("Error for compute %s\n", mName.c_str());
#endif
mValid = false;
return false;
}
mContentDirty = false;
return true;
}
size_t Variable::linkNumber() const {
return mFrom->outputs().size();
}
const std::vector<WeakEXPRP>& Variable::toExprs() const {
return mFrom->outputs();
}
VARP Variable::create(EXPRP expr, int index) {
VARP res(new Variable(expr, index));
return res;
}
void Expr::replace(EXPRP old, EXPRP from) {
if (old.get() == from.get()) {
return;
}
for (auto input : old->inputs()) {
for (int j=0; j<input->mFrom->mTo.size(); ++j) {
auto ref = input->mFrom->mTo[j].lock();
if (ref.get() == old.get()) {
input->mFrom->mTo[j].reset();
}
}
}
for (auto input : from->inputs()) {
bool hasSet = false;
for (int j=0; j<input->mFrom->mTo.size(); ++j) {
auto ref = input->mFrom->mTo[j].lock();
if (ref.get() == old.get()) {
hasSet = true;
break;
}
}
if (!hasSet) {
for (int j=0; j<input->mFrom->mTo.size(); ++j) {
auto ref = input->mFrom->mTo[j].lock();
if (nullptr == ref) {
input->mFrom->mTo[j] = WeakEXPRP(old);
hasSet = true;
break;
}
}
}
if (!hasSet) {
input->mFrom->mTo.emplace_back(WeakEXPRP(old));
}
}
Executor::getGlobalExecutor()->recycle(old.get());
old->mOp = from->mOp;
old->mName = from->mName;
old->mOutputNames = from->mOutputNames;
old->mExtraBuffer = from->mExtraBuffer;
old->mOpBufferSize = from->mOpBufferSize;
old->mType = from->mType;
old->mInside = from->mInside;
old->mContentDirty = from->mContentDirty;
old->mInfoDirty = true;
old->mInputs = from->mInputs;
old->visitOutputs([&](EXPRP expr, int index) {
if (expr->mInfoDirty) {
return false;
}
expr->mContentDirty = true;
expr->mInfoDirty = true;
return true;
});
}
void Variable::setName(const std::string& name) {
mFrom->mOutputNames[mFromIndex] = name;
if (mFrom->name().empty()) {
mFrom->setName(name);
}
}
const std::string& Variable::name() const {
return mFrom->outputName(mFromIndex);
}
bool Variable::input(VARP src) {
if (nullptr != mFrom->get() && VARP::INPUT != mFrom->mType) {
MNN_ERROR("Can't input to no-input op\n");
return false;
}
if (nullptr == src) {
/*Close the Input*/
mFrom->visitOutputs([](EXPRP expr, int index) {
auto recurse = expr->mValid; expr->mValid = false;
return recurse;
});
mFrom->mValid = false;
return false;
}
auto info = src->getInfo();
std::shared_ptr<Variable::Info> tempInfo;
bool needCopy = true;
if (nullptr == info || 0 == info->size) {
tempInfo.reset(new Variable::Info);
tempInfo->type = halide_type_of<float>();
info = tempInfo.get();
needCopy = false;
}
auto dstInfo = getInfo();
bool needChange = nullptr == dstInfo || info->order != dstInfo->order || info->dim.size() != dstInfo->dim.size();
if (!needChange) {
for (int i=0; i<info->dim.size(); ++i) {
if (dstInfo->dim[i] != info->dim[i]) {
needChange = true;
break;
}
}
}
if (needChange) {
bool needAlloc = info->size * info->type.bytes() > mFrom->mInside->mOutputInfos[0].size * mFrom->mInside->mOutputInfos[0].type.bytes();
mFrom->mInside->mOutputInfos[0] = *info;
if (needAlloc) {
mFrom->mExtraBuffer.reset(new char[info->size * info->type.bytes()]);
}
mFrom->mInside->mOutputInfos[0].ptr = mFrom->mExtraBuffer.get();
}
if (needCopy) {
auto dstPtr = writeInternal(false);
auto srcPtr = src->readMap<void>();
if (nullptr == dstPtr || nullptr == srcPtr) {
MNN_ERROR("Alloc memory error or compute src error in Variable::Input\n");
return false;
}
::memcpy(dstPtr, srcPtr, info->size * info->type.bytes());
}
if (needChange) {
mFrom->visitOutputs([](EXPRP expr, int index) { return expr->setInfoDirty(); });
} else {
informDirty();
}
return true;
}
void Variable::replace(VARP dst, VARP src) {
if (nullptr == src) {
dst->setExpr(nullptr, 0);
return;
}
Expr::replace(dst->mFrom, src->mFrom);
dst->mFromIndex = src->mFromIndex;
}
const Variable::Info* Variable::getInfo() {
if (nullptr == mFrom) {
return nullptr;
}
auto res = mFrom->requireInfo();
if (!res) {
return nullptr;
}
return mFrom->mInside->mOutputInfos.data() + mFromIndex;
}
bool Variable::resize(INTS dims) {
if (nullptr != mFrom->get() && VARP::INPUT != mFrom->mType) {
MNN_ERROR("Can't resize variable not from input\n");
return false;
}
auto& info = mFrom->mInside->mOutputInfos[0];
if (dims.size() == info.dim.size()) {
bool theSame = true;
for (int i=0; i<dims.size(); ++i) {
if (info.dim[i] != dims[i]) {
theSame = false;
break;
}
}
if (theSame) {
return true;
}
}
info.dim = dims;
info.size = 1;
for (int i=0; i<info.dim.size(); ++i) {
info.size *= info.dim[i];
}
mFrom->mExtraBuffer.reset(new char[info.size * info.type.bytes()]);
info.ptr = mFrom->mExtraBuffer.get();
mFrom->mContentDirty = true;
mFrom->mValid = true;
mFrom->mInside->mInputInfos.clear();
mFrom->visitOutputs([](EXPRP expr, int index) { return expr->setInfoDirty(); });
return true;
}
void Expr::visit(EXPRP expr, const std::function<bool(EXPRP)>& before, const std::function<bool(EXPRP)>& after) {
bool next = before(expr);
if (!next) {
return;
}
for (int i = 0; i < expr->inputs().size(); ++i) {
visit(expr->inputs()[i]->mFrom, before, after);
}
after(expr);
}
void* Variable::readInternal() {
if (nullptr == mFrom->get()) {
if (mFrom->mContentDirty) {
return nullptr;
}
return mFrom->outputInfo(mFromIndex)->ptr;
}
auto res = mFrom->requireCompute();
if (!res) {
return nullptr;
}
return mFrom->outputInfo(mFromIndex)->ptr;
}
void Variable::informDirty() {
mFrom->visitOutputs([](EXPRP expr, int index) {
auto needRecurse = expr->setContentDirty(index);
return needRecurse;
});
}
void* Variable::writeInternal(bool inform) {
if (inform) {
informDirty();
}
mFrom->mContentDirty = false;
return mFrom->mInside->mOutputInfos[0].ptr;
}
void Variable::unMap() {
//mFrom->inside()->onUnMapContent(mFromIndex);
}
void Expr::visitOutputs(const std::function<bool(EXPRP, int)>& visit) {
for (auto iter = mTo.begin(); iter != mTo.end();) {
auto expr = iter->lock();
if (nullptr == expr) {
iter = mTo.erase(iter);
continue;
}
bool recurse = false;
auto inputs = expr->inputs();
for (int i=0; i<inputs.size(); ++i) {
if (inputs[i]->mFrom.get() == this) {
recurse = recurse || visit(expr, i);
}
}
if (recurse) {
expr->visitOutputs(visit);
}
iter++;
}
}
bool Expr::setContentDirty(int inputIndex) {
if (mContentDirty) {
return false;
}
if (nullptr != mInside) {
if (mInside->mReq.shapeNeedContent[inputIndex]) {
visitOutputs([](EXPRP expr, int index) { return expr->setInfoDirty(); });
return setInfoDirty();
}
if (!mInside->mReq.contentNeedContent[inputIndex]) {
return false;
}
}
mContentDirty = true;
return true;
}
bool Expr::setInfoDirty() {
if (mInfoDirty && mValid) {
//MNN_PRINT("End Info Dirty for %s\n", mName.c_str());
return false;
}
//MNN_PRINT("Set Info Dirty for %s\n", mName.c_str());
mInfoDirty = true;
mContentDirty = true;
mValid = true;
return true;
}
std::vector<VARP> Variable::load(const char* fileName) {
AUTOTIME;
FileLoader loader(fileName);
if (!loader.valid()) {
MNN_ERROR("Error for open %s\n", fileName);
return {};
}
loader.read();
if (!loader.valid()) {
return {};
}
AutoStorage<uint8_t> buffer;
loader.merge(buffer);
if (buffer.get() == nullptr) {
return {};
}
flatbuffers::Verifier verify((const uint8_t*)(buffer.get()), buffer.size());
if (false == VerifyNetBuffer(verify)) {
MNN_PRINT("Invalidate buffer to create variable\n");
return {};
}
std::unique_ptr<NetT> source(UnPackNet(buffer.get()));
if (nullptr == source) {
return {};
}
if (source->oplists.empty()) {
MNN_ERROR("Invalid net\n");
return {};
}
// FUNC_PRINT(source->oplists.size());
auto opSize = source->oplists.size();
auto tensorCount = source->tensorName.size();
if (tensorCount == 0) {
tensorCount = source->tensorNumber;
}
std::vector<VARP> variable;
variable.reserve(tensorCount);
std::map<int, VARP> variableMap;
// Generate All Exprs by order of net
for (int i = 0; i < opSize; ++i) {
std::vector<VARP> inputs;
auto op = source->oplists[i].get();
for (int index = 0; index < op->inputIndexes.size(); ++index) {
auto inputIndex = op->inputIndexes[index];
if (variableMap.find(inputIndex) == variableMap.end()) {
MNN_ERROR("Can't find variable for %s, the graph is error\n", op->name.c_str());
break;
}
inputs.emplace_back(variableMap[inputIndex]);
}
EXPRP expr = Expr::create(source->oplists[i].get(), inputs, (int)op->outputIndexes.size());
expr->setName(source->oplists[i]->name);
for (int index = 0; index < op->outputIndexes.size(); ++index) {
auto outputIndex = op->outputIndexes[index];
if (variableMap.find(outputIndex) == variableMap.end()) {
auto newVariable = Variable::create(expr, index);
if (source->tensorName.size() > outputIndex) {
newVariable->setName(source->tensorName[outputIndex]);
}
variableMap[outputIndex] = newVariable;
variable.emplace_back(newVariable);
}
}
}
return variable;
}
std::map<std::string, VARP> Variable::loadMap(const char* fileName) {
AUTOTIME;
auto variables = load(fileName);
std::map<std::string, VARP> varMap;
for (auto v : variables) {
varMap[v->name()] = v;
}
return varMap;
}
std::vector<VARP> Variable::mapToSequence(const std::map<std::string, VARP>& source) {
std::vector<VARP> outputs;
outputs.reserve(source.size());
for (auto& iter : source) {
outputs.emplace_back(iter.second);
}
return outputs;
}
void Variable::save(const std::vector<VARP>& vars, NetT* dest) {
auto executeOrder = getExecuteOrder(vars);
// Get Expr - TensorOffset Map
std::map<EXPRP, int> varIndexInfo;
{
int tensorOffset = 0;
for (int i=0; i<executeOrder.size(); ++i) {
auto expr = executeOrder[i];
auto outputSize = executeOrder[i]->outputSize();
varIndexInfo[expr] = tensorOffset;
tensorOffset += outputSize;
}
dest->tensorName.resize(tensorOffset);
}
// Create All Op
for (int index = 0; index < executeOrder.size(); ++index) {
auto expr = executeOrder[index];
auto mOp = expr->get();
std::unique_ptr<OpT> op;
if (nullptr != mOp) {
op.reset(mOp->UnPack());
} else {
MNN_ASSERT(1 == expr->outputSize());
auto& info = expr->mInside->mOutputInfos[0];
op.reset(new OpT);
if (expr->mType != VARP::INPUT) {
auto blob = new BlobT;
blob->dataFormat = (MNN_DATA_FORMAT)Utils::convertFormat(info.order);
blob->dims = info.dim;
if (info.type.code == halide_type_float) {
blob->dataType = DataType_DT_FLOAT;
blob->float32s.resize(info.size);
::memcpy(blob->float32s.data(), info.ptr, info.size * sizeof(float));
} else if (info.type.code == halide_type_int) {
blob->dataType = DataType_DT_INT32;
blob->int32s.resize(info.size);
::memcpy(blob->int32s.data(), info.ptr, info.size * sizeof(int));
}
else if (info.type.code == halide_type_uint && info.type.bits == 8) {
blob->dataType = DataType_DT_UINT8;
blob->uint8s.resize(info.size);
::memcpy(blob->uint8s.data(), info.ptr, info.size * sizeof(uint8_t));
}
op->type = OpType_Const;
if (expr->mType == VARP::TRAINABLE) {
op->type = OpType_TrainableParam;
}
op->main.type = OpParameter_Blob;
op->main.value = blob;
} else {
op->type = OpType_Input;
op->main.type = OpParameter_Input;
op->main.value = new InputT;
op->main.AsInput()->dtype = (MNN::DataType)Utils::convertDataType(info.type);
MNN_ASSERT(op->main.AsInput()->dtype != DataType_DT_INVALID);
op->main.AsInput()->dims = info.dim;
op->main.AsInput()->dformat = (MNN_DATA_FORMAT)Utils::convertFormat(info.order);
}
}
op->name = expr->name();
op->inputIndexes.resize(expr->inputs().size());
for (int i = 0; i < op->inputIndexes.size(); ++i) {
auto inputExpr = expr->inputs()[i]->expr();
op->inputIndexes[i] = varIndexInfo[inputExpr.first] + inputExpr.second;
}
if (op->name.empty()) {
op->name = EnumNameOpType(op->type) + numberToString(index+1);
}
op->outputIndexes.resize(expr->outputSize());
auto tensorIndexOffset = varIndexInfo[expr];
for (int v=0; v<expr->outputSize(); ++v) {
op->outputIndexes[v] = tensorIndexOffset + v;
dest->tensorName[tensorIndexOffset+v] = expr->outputName(v);
}
dest->oplists.emplace_back(std::move(op));
}
// Fill Empty Tensor Name With Default Op Name
for (int index = 0; index < executeOrder.size(); ++index) {
auto expr = executeOrder[index];
auto op = dest->oplists[index].get();
auto tensorIndexOffset = varIndexInfo[expr];
for (int v=0; v<expr->outputSize(); ++v) {
auto index = tensorIndexOffset + v;
if (dest->tensorName[index].empty()) {
if (v == 0) {
dest->tensorName[index] = op->name;
} else {
dest->tensorName[index] = op->name + numberToString(v);
}
}
}
}
}
void Variable::save(const std::vector<VARP>& vars, const char* fileName) {
std::unique_ptr<NetT> net(new NetT);
save(vars, net.get());
// FUNC_PRINT(net->oplists.size());
flatbuffers::FlatBufferBuilder builder(1024);
auto offset = Net::Pack(builder, net.get());
builder.Finish(offset);
// TODO, use FileWriter instead
FILE* f = fopen(fileName, "wb");
if (nullptr == f) {
MNN_ERROR("Open %s error\n", fileName);
return;
}
static const size_t block = 4096;
size_t totalSize = builder.GetSize();
size_t blockSize = UP_DIV(totalSize, block);
for (size_t i = 0; i < blockSize; ++i) {
size_t sta = block * i;
size_t fin = std::min(sta + block, totalSize);
if (fin > sta) {
auto realSize = fwrite((const char*)builder.GetBufferPointer() + sta, 1, fin - sta, f);
if (realSize != fin - sta) {
MNN_ERROR("Write %s error\n", fileName);
}
}
}
fclose(f);
}
std::pair<std::map<std::string, VARP>, std::map<std::string, VARP>> Variable::getInputAndOutput(const std::map<std::string, VARP>& allVariable) {
std::pair<std::map<std::string, VARP>, std::map<std::string, VARP>> res;
for (auto& iter : allVariable) {
auto var = iter.second;
if (var->expr().first->get() == nullptr && var->expr().first->mType == VARP::INPUT) {
res.first[var->name()] = var;
}
if (var->linkNumber() == 0) {
res.second[var->name()] = var;
}
}
return res;
}
std::vector<EXPRP> Variable::getExecuteOrder(const std::vector<VARP>& outputs) {
std::vector<EXPRP> sequence;
for (auto output : outputs) {
Expr::visit(
output->mFrom, [](EXPRP expr) { return !expr->visited(); },
[&sequence](EXPRP expr) {
//FUNC_PRINT_ALL(var->name().c_str(), s);
if (!expr->visited()) {
sequence.emplace_back(expr);
expr->setVisited(true);
}
return true;
});
}
for (auto expr : sequence) {
expr->setVisited(false);
}
return sequence;
}
VARP VARP::operator+(VARP var) const {
return _Add(VARP(mContent), var);
}
VARP VARP::operator-(VARP var) const {
return _Subtract(VARP(mContent), var);
}
VARP VARP::operator*(VARP var) const {
return _Multiply(VARP(mContent), var);
}
VARP VARP::operator/(VARP var) const {
return _Divide(VARP(mContent), var);
}
VARP VARP::mean(INTS dims) const {
return _ReduceMean(VARP(mContent), dims);
}
VARP VARP::sum(INTS dims) const {
return _ReduceSum(VARP(mContent), dims);
}
} // namespace Express
} // namespace MNN