MNN/source/backend/opencl/execution/buffer/SelfAttentionBufExecution.cpp

587 lines
31 KiB
C++
Raw Normal View History

2024-07-04 11:53:45 +08:00
//
// FmhaV2Execution.cpp
// MNN
//
// Created by MNN on 2024/06/03.
// Copyright © 2018, Alibaba Group Holding Limited
//
#ifndef MNN_OPENCL_BUFFER_CLOSED
#ifdef MNN_SUPPORT_TRANSFORMER_FUSE
#include <iostream>
#include <fstream>
#include "backend/opencl/execution/buffer/SelfAttentionBufExecution.hpp"
namespace MNN {
namespace OpenCL {
SelfAttentionBufImpl::SelfAttentionBufImpl(const MNN::Op *op, Backend *backend){
auto fmha_v2_param = op->main_as_FmhaV2Param();
mNumHead = fmha_v2_param->heads();
mOpenCLBackend = static_cast<OpenCLBackend *>(backend);
auto kernel = mOpenCLBackend->getOpenCLRuntime()->buildKernel("self_attention_buf", "softmax_inside", {"-DSOFTMAX_LOCAL_SIZE=512"});
mMaxWorkGroupSize = static_cast<uint32_t>(mOpenCLBackend->getOpenCLRuntime()->getMaxWorkGroupSize(kernel));
}
int SelfAttentionBufImpl::getLocalSize(int size, int maxGroupSize){
int local_size = 1;
while(local_size * 2 <= maxGroupSize && local_size * 2 <= size){
local_size *= 2;
}
return local_size;
}
// [B, seqlen, HeadNum*3*HeadDim] -> [B, seqlen, HeadNum*HeadDim]
ErrorCode SelfAttentionBufImpl::onResize(Backend *backend, const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs) {
mOpenCLBackend = static_cast<OpenCLBackend *>(backend);
mOpenCLBackend->startRecord(mRecording);
auto input = inputs[0];// [Batch, seqLen, mNumHead * 3 * mHeadDim]
auto runtime = mOpenCLBackend->getOpenCLRuntime();
auto shape = input->shape();
int tile_mn = 32;
int tile_k = 16; // for gemm alignment
int batch = shape[0];
int seq_len = shape[1];
mHeadDim = shape[2] / mNumHead / 3;
mScale = 1.0 / sqrt(mHeadDim);
if(mOpenCLBackend->getOpenCLRuntime()->isSupportedFP16()){
mByte = 2;
}
// split several pieces for memory save
if(seq_len > 1024) {
mQseqSplitNum = (seq_len >= 4096) ? 8 : ((seq_len < 2048) ? 2 : 4);
}
int buffer_size = batch * mNumHead * ROUND_UP(mHeadDim, tile_k) * ROUND_UP(seq_len, tile_mn);
int buffer_qk_size = batch * mNumHead * ROUND_UP(seq_len, tile_mn) * ROUND_UP(seq_len, tile_mn) / mQseqSplitNum;
int buffer_v_size = batch * mNumHead * ROUND_UP(mHeadDim, tile_mn) * ROUND_UP(seq_len, tile_mn);
mTempQ.reset(Tensor::createDevice<float>(std::vector<int>{buffer_size / mQseqSplitNum}));
mTempK.reset(Tensor::createDevice<float>(std::vector<int>{buffer_size}));
mTempV.reset(Tensor::createDevice<float>(std::vector<int>{buffer_v_size}));
mTempQK.reset(Tensor::createDevice<float>(std::vector<int>{buffer_qk_size}));
mTempTrans.reset(Tensor::createDevice<float>(std::vector<int>{buffer_qk_size}));
mTempSoftMax.reset(Tensor::createDevice<float>(std::vector<int>{buffer_qk_size}));
mTempQKV.reset(Tensor::createDevice<float>(std::vector<int>{buffer_v_size / mQseqSplitNum}));
// printf("buffer size x2:%f MB, buffer qk size x3:%f MB, buffer v size x2 :%f MB\n", buffer_size * 2.0 / 1024.0 / 1024.0, buffer_qk_size * 2.0 / 1024.0 / 1024.0, buffer_v_size * 2.0 / 1024.0 / 1024.0);
mOpenCLBackend->onAcquireBuffer(mTempQ.get(), Backend::DYNAMIC);
mOpenCLBackend->onAcquireBuffer(mTempK.get(), Backend::DYNAMIC);
mOpenCLBackend->onAcquireBuffer(mTempV.get(), Backend::DYNAMIC);
mOpenCLBackend->onAcquireBuffer(mTempQK.get(), Backend::DYNAMIC);
mOpenCLBackend->onReleaseBuffer(mTempQ.get(), Backend::DYNAMIC);
mOpenCLBackend->onReleaseBuffer(mTempK.get(), Backend::DYNAMIC);
mOpenCLBackend->onAcquireBuffer(mTempSoftMax.get(), Backend::DYNAMIC);
mOpenCLBackend->onReleaseBuffer(mTempQK.get(), Backend::DYNAMIC);
mOpenCLBackend->onAcquireBuffer(mTempTrans.get(), Backend::DYNAMIC);
mOpenCLBackend->onReleaseBuffer(mTempSoftMax.get(), Backend::DYNAMIC);
mOpenCLBackend->onAcquireBuffer(mTempQKV.get(), Backend::DYNAMIC);
mOpenCLBackend->onReleaseBuffer(mTempV.get(), Backend::DYNAMIC);
mOpenCLBackend->onReleaseBuffer(mTempTrans.get(), Backend::DYNAMIC);
mOpenCLBackend->onReleaseBuffer(mTempQKV.get(), Backend::DYNAMIC);
mKernel_split.resize(mQseqSplitNum);
mKernel_qk.resize(mQseqSplitNum);
mKernel_softmax.resize(mQseqSplitNum);
mKernel_qkv.resize(mQseqSplitNum);
mKernel_clip.resize(mQseqSplitNum);
mKernel_trans.resize(mQseqSplitNum);
mGlobalWorkSizeSplit.resize(mQseqSplitNum);
mLocalWorkSizeSplit.resize(mQseqSplitNum);
mGlobalWorkSizeClip.resize(mQseqSplitNum);
mLocalWorkSizeClip.resize(mQseqSplitNum);
mGlobalWorkSizeQk.resize(mQseqSplitNum);
mLocalWorkSizeQk.resize(mQseqSplitNum);
mGlobalWorkSizeSoftMax.resize(mQseqSplitNum);
mLocalWorkSizeSoftMax.resize(mQseqSplitNum);
mGlobalWorkSizeQkv.resize(mQseqSplitNum);
mLocalWorkSizeQkv.resize(mQseqSplitNum);
mGlobalWorkSizeTrans.resize(mQseqSplitNum);
mLocalWorkSizeTrans.resize(mQseqSplitNum);
for(int seq_idx = 0; seq_idx < mQseqSplitNum; seq_idx++) {
// Split input to q k v
{
// [Batch, seqLen, mNumHead * 3 * mHeadDim] ->
// Q : [Batch * mNumHead, ROUND_UP(mHeadDim, tile_k), ROUND_UP(seqLen, tile_mn)]
// K : [Batch * mNumHead, ROUND_UP(mHeadDim, tile_k), ROUND_UP(seqLen, tile_mn)]
// V : [Batch * mNumHead, ROUND_UP(seqLen, tile_mn), ROUND_UP(mHeadDim, tile_mn)]
std::set<std::string> buildOption;
if((mHeadDim % 4) != 0){
buildOption.emplace("-DHEADDIM_LEAVE");
}
if((seq_len % 4) != 0){
buildOption.emplace("-DSEQLEN_LEAVE");
}
int seq_len_pack_mn = ROUND_UP(seq_len, tile_mn);
int head_dim_pack_mn = ROUND_UP(mHeadDim, tile_mn);
int head_dim_pack_k = ROUND_UP(mHeadDim, tile_k);
int seq_len_piece = seq_len_pack_mn/mQseqSplitNum;
mKernel_split[seq_idx] = runtime->buildKernel("self_attention_buf", "split_transpose_qkv", buildOption, inputs[0], outputs[0]);
auto maxWorkGroupSize = static_cast<uint32_t>(runtime->getMaxWorkGroupSize(mKernel_split[seq_idx]));
mGlobalWorkSizeSplit[seq_idx] = {static_cast<uint32_t>(UP_DIV(seq_len_pack_mn, 4)), static_cast<uint32_t>(UP_DIV(head_dim_pack_mn, 4)), static_cast<uint32_t>(batch*mNumHead)};
if(seq_idx > 0) {
mGlobalWorkSizeSplit[seq_idx][0] = static_cast<uint32_t>(UP_DIV(seq_len_piece, 4));
}
uint32_t index = 0;
cl_int ret = CL_SUCCESS;
ret |= mKernel_split[seq_idx]->get().setArg(index++, mGlobalWorkSizeSplit[seq_idx][0]);
ret |= mKernel_split[seq_idx]->get().setArg(index++, mGlobalWorkSizeSplit[seq_idx][1]);
ret |= mKernel_split[seq_idx]->get().setArg(index++, mGlobalWorkSizeSplit[seq_idx][2]);
ret |= mKernel_split[seq_idx]->get().setArg(index++, openCLBuffer(input));
ret |= mKernel_split[seq_idx]->get().setArg(index++, openCLBuffer(mTempQ.get()));
ret |= mKernel_split[seq_idx]->get().setArg(index++, openCLBuffer(mTempK.get()));
ret |= mKernel_split[seq_idx]->get().setArg(index++, openCLBuffer(mTempV.get()));
ret |= mKernel_split[seq_idx]->get().setArg(index++, seq_len_pack_mn);
ret |= mKernel_split[seq_idx]->get().setArg(index++, seq_len_piece);
ret |= mKernel_split[seq_idx]->get().setArg(index++, head_dim_pack_mn);
ret |= mKernel_split[seq_idx]->get().setArg(index++, head_dim_pack_k);
ret |= mKernel_split[seq_idx]->get().setArg(index++, seq_len);
ret |= mKernel_split[seq_idx]->get().setArg(index++, mNumHead);
ret |= mKernel_split[seq_idx]->get().setArg(index++, mHeadDim);
ret |= mKernel_split[seq_idx]->get().setArg(index++, seq_idx);
MNN_CHECK_CL_SUCCESS(ret, "setArg split_transpose_qkv");
mLocalWorkSizeSplit[seq_idx] = localWS3DDefault(mGlobalWorkSizeSplit[seq_idx], maxWorkGroupSize, runtime, "split_transpose_qkv", mKernel_split[seq_idx]).first;
mOpenCLBackend->recordKernel3d(mKernel_split[seq_idx], mGlobalWorkSizeSplit[seq_idx], mLocalWorkSizeSplit[seq_idx]);
}
// query * key -> div
{
// Q : [Batch * mNumHead, ROUND_UP(mHeadDim, tile_k), ROUND_UP(seqLen, tile_mn)] -> [B, K, M]
// K : [Batch * mNumHead, ROUND_UP(mHeadDim, tile_k), ROUND_UP(seqLen, tile_mn)] -> [B, K, N]
// QV: [Batch * mNumHead, ROUND_UP(seqLen, tile_mn), ROUND_UP(seqLen, tile_mn)] -> [B, N, M]
int loop = batch * mNumHead;
int e_pack = ROUND_UP(seq_len, tile_mn) / mQseqSplitNum;
int l_pack = ROUND_UP(mHeadDim, tile_k);
int h_pack = ROUND_UP(seq_len, tile_mn);
std::set<std::string> buildOptions;
uint32_t layout = 4;
auto param = getGemmParams({(uint32_t)e_pack, (uint32_t)h_pack, (uint32_t)l_pack, layout, (uint32_t)loop}, {openCLBuffer(mTempQ.get()), openCLBuffer(mTempK.get()), openCLBuffer(mTempQK.get())}, mOpenCLBackend->getOpenCLRuntime());
int GEMMK=param[0], KREG=param[1], KWG=param[2], KWI=param[3], MDIMA=param[4], MDIMC=param[5], MWG=param[6], NDIMB=param[7], NDIMC=param[8], NWG=param[9], SA=param[10], SB=param[11], STRM=param[12], STRN=param[13], VWM=param[14], VWN=param[15];
buildOptions.emplace("-DGEMMK=" + std::to_string(GEMMK));
buildOptions.emplace("-DKREG=" + std::to_string(KREG));
buildOptions.emplace("-DKWG=" + std::to_string(KWG));
buildOptions.emplace("-DKWI=" + std::to_string(KWI));
buildOptions.emplace("-DMDIMA=" + std::to_string(MDIMA));
buildOptions.emplace("-DMDIMC=" + std::to_string(MDIMC));
buildOptions.emplace("-DMWG=" + std::to_string(MWG));
buildOptions.emplace("-DNDIMB=" + std::to_string(NDIMB));
buildOptions.emplace("-DNDIMC=" + std::to_string(NDIMC));
buildOptions.emplace("-DNWG=" + std::to_string(NWG));
buildOptions.emplace("-DSA=" + std::to_string(SA));
buildOptions.emplace("-DSB=" + std::to_string(SB));
buildOptions.emplace("-DSTRM=" + std::to_string(STRM));
buildOptions.emplace("-DSTRN=" + std::to_string(STRN));
buildOptions.emplace("-DVWM=" + std::to_string(VWM));
buildOptions.emplace("-DVWN=" + std::to_string(VWN));
if(layout >= 4) {
buildOptions.emplace("-DOUTPUTMN");
}
int tileM = MWG;
int tileN = NWG;
int localM = MDIMC;
int localN = NDIMC;
if(mOpenCLBackend->getOpenCLRuntime()->getGpuType() == GpuType::ADRENO) {
buildOptions.emplace("-DUSE_CL_MAD=1");
buildOptions.emplace("-DRELAX_WORKGROUP_SIZE=1");
}
if(mOpenCLBackend->getOpenCLRuntime()->isSupportedFP16()){
buildOptions.emplace(" -DPRECISION=16");
} else {
buildOptions.emplace(" -DPRECISION=32");
}
mKernel_qk[seq_idx] = mOpenCLBackend->getOpenCLRuntime()->buildKernel("matmul_params_buf", "XgemmBatched", buildOptions);
int out_per_thread_m = tileM / localM;
int out_per_thread_n = tileN / localN;
mGlobalWorkSizeQk[seq_idx] = {static_cast<uint32_t>(e_pack/out_per_thread_m), static_cast<uint32_t>(h_pack/out_per_thread_n), static_cast<uint32_t>(loop)};
mLocalWorkSizeQk[seq_idx] = {static_cast<uint32_t>(localM), static_cast<uint32_t>(localN), 1};
float alpha = mScale;
float beta = 0.0f;
int idx = 0;
cl_int ret = CL_SUCCESS;
ret |= mKernel_qk[seq_idx]->get().setArg(idx++, static_cast<int>(e_pack));
ret |= mKernel_qk[seq_idx]->get().setArg(idx++, static_cast<int>(h_pack));
ret |= mKernel_qk[seq_idx]->get().setArg(idx++, static_cast<int>(l_pack));
ret |= mKernel_qk[seq_idx]->get().setArg(idx++, alpha);
ret |= mKernel_qk[seq_idx]->get().setArg(idx++, beta);
ret |= mKernel_qk[seq_idx]->get().setArg(idx++, openCLBuffer(mTempQ.get()));
ret |= mKernel_qk[seq_idx]->get().setArg(idx++, e_pack);
ret |= mKernel_qk[seq_idx]->get().setArg(idx++, l_pack);
ret |= mKernel_qk[seq_idx]->get().setArg(idx++, openCLBuffer(mTempK.get()));
ret |= mKernel_qk[seq_idx]->get().setArg(idx++, h_pack);
ret |= mKernel_qk[seq_idx]->get().setArg(idx++, l_pack);
ret |= mKernel_qk[seq_idx]->get().setArg(idx++, openCLBuffer(mTempQK.get()));
ret |= mKernel_qk[seq_idx]->get().setArg(idx++, e_pack);
ret |= mKernel_qk[seq_idx]->get().setArg(idx++, h_pack);
MNN_CHECK_CL_SUCCESS(ret, "setArg Self-Attention batchmatmul qk Kernel");
mOpenCLBackend->recordKernel3d(mKernel_qk[seq_idx], mGlobalWorkSizeQk[seq_idx], mLocalWorkSizeQk[seq_idx]);
}
// softmax
{
// QV: [Batch * mNumHead, ROUND_UP(seqLen, tile_mn), ROUND_UP(seqLen, tile_mn)]
// Sotmax: [Batch * mNumHead, ROUND_UP(seqLen, tile_mn), ROUND_UP(seqLen, tile_mn)]
// axis : 1 (middle dim)
mSoftmaxShape[0] = batch*mNumHead;
mSoftmaxShape[1] = ROUND_UP(seq_len, tile_mn)/mQseqSplitNum;
mSoftmaxShape[2] = ROUND_UP(seq_len, tile_mn);
auto MaxLocalSize = std::min(std::min(runtime->getMaxWorkItemSizes()[0], mMaxWorkGroupSize), static_cast<uint32_t>(256));
int localSize = getLocalSize(mSoftmaxShape[1], MaxLocalSize);
if(localSize < 4){
localSize = 1;
}
std::set<std::string> buildOption;
buildOption.emplace("-DSOFTMAX_LOCAL_SIZE=" + std::to_string(localSize));
// buildOption.emplace("-DOUTPUT_TRANSPOSE");
mKernel_softmax[seq_idx] = runtime->buildKernel("self_attention_buf", "softmax_inside", buildOption, inputs[0], outputs[0]);
mGlobalWorkSizeSoftMax[seq_idx] = {static_cast<uint32_t>(localSize), static_cast<uint32_t>(mSoftmaxShape[1]), static_cast<uint32_t>(mSoftmaxShape[0])};
uint32_t index = 0;
cl_int ret = CL_SUCCESS;
ret |= mKernel_softmax[seq_idx]->get().setArg(index++, mGlobalWorkSizeSoftMax[seq_idx][0]);
ret |= mKernel_softmax[seq_idx]->get().setArg(index++, mGlobalWorkSizeSoftMax[seq_idx][1]);
ret |= mKernel_softmax[seq_idx]->get().setArg(index++, mGlobalWorkSizeSoftMax[seq_idx][2]);
ret |= mKernel_softmax[seq_idx]->get().setArg(index++, openCLBuffer(mTempQK.get()));
ret |= mKernel_softmax[seq_idx]->get().setArg(index++, openCLBuffer(mTempSoftMax.get()));
ret |= mKernel_softmax[seq_idx]->get().setArg(index++, seq_len);
ret |= mKernel_softmax[seq_idx]->get().setArg(index++, mSoftmaxShape);
MNN_CHECK_CL_SUCCESS(ret, "setArg Self-Attention softmax");
mLocalWorkSizeSoftMax[seq_idx] = {static_cast<uint32_t>(localSize), 1, 1};
mOpenCLBackend->recordKernel3d(mKernel_softmax[seq_idx], mGlobalWorkSizeSoftMax[seq_idx], mLocalWorkSizeSoftMax[seq_idx]);
}
{
unsigned int tileW = 32;
unsigned int tileH = 32;
int loop = batch * mNumHead;
int transDimW = ROUND_UP(seq_len, tile_mn) / mQseqSplitNum;
int transDimH = ROUND_UP(seq_len, tile_mn);
if((transDimW & 63) == 0 && (transDimH & 63) == 0) {
tileW = 64;
tileH = 64;
}
unsigned int localW = 8;
unsigned int localH = 8;
std::set<std::string> buildOptions;
buildOptions.emplace("-DWGSW=" + std::to_string(tileW));
buildOptions.emplace("-DWGSH=" + std::to_string(tileH));
buildOptions.emplace("-DTSW=" + std::to_string(tileW/localW));
buildOptions.emplace("-DTSH=" + std::to_string(tileH/localH));
mKernel_trans[seq_idx] = runtime->buildKernel("self_attention_buf", "trans_3d_buf", buildOptions, inputs[0], outputs[0]);
int w_per_thread = tileW / localW;
int h_per_thread = tileH / localH;
mGlobalWorkSizeTrans[seq_idx] = {(uint32_t)transDimW/w_per_thread, (uint32_t)transDimH/h_per_thread, (uint32_t)(loop)};
mLocalWorkSizeTrans[seq_idx] = {localW, localH, 1};
uint32_t index = 0;
cl_int ret = CL_SUCCESS;
ret |= mKernel_trans[seq_idx]->get().setArg(index++, openCLBuffer(mTempSoftMax.get()));
ret |= mKernel_trans[seq_idx]->get().setArg(index++, openCLBuffer(mTempTrans.get()));
ret |= mKernel_trans[seq_idx]->get().setArg(index++, loop);
ret |= mKernel_trans[seq_idx]->get().setArg(index++, transDimW);
ret |= mKernel_trans[seq_idx]->get().setArg(index++, transDimH);
MNN_CHECK_CL_SUCCESS(ret, "setArg Self-Attention transpose");
mOpenCLBackend->recordKernel3d(mKernel_trans[seq_idx], mGlobalWorkSizeTrans[seq_idx], mLocalWorkSizeTrans[seq_idx]);
}
// qk * value
{
// Sotmax: [Batch * mNumHead, ROUND_UP(seqLen, tile), ROUND_UP(seqLen, tile)] -> [B, K, M]
// V : [Batch * mNumHead, ROUND_UP(seqLen, tile), ROUND_UP(mHeadDim, tile)] -> [B, K, N]
// QKV : [Batch * mNumHead, ROUND_UP(mHeadDim, tile), ROUND_UP(seqLen, tile)] -> [B, N, M]
int loop = batch * mNumHead;
int e_pack = ROUND_UP(seq_len, tile_mn) / mQseqSplitNum;
int l_pack = ROUND_UP(seq_len, tile_mn);
int h_pack = ROUND_UP(mHeadDim, tile_mn);
std::set<std::string> buildOptions;
/*
0 -> A:[K, M] B:[K, N] C:[N, M]
1 -> A:[K, M] B:[N, K] C:[N, M]
2 -> A:[M, K] B:[K, N] C:[N, M]
3 -> A:[M, K] B:[N, K] C:[N, M]
4 -> A:[K, M] B:[K, N] C:[M, N]
5 -> A:[K, M] B:[N, K] C:[M, N]
6 -> A:[M, K] B:[K, N] C:[M, N]
7 -> A:[M, K] B:[N, K] C:[M, N]
*/
uint32_t layout = 0;
auto param = getGemmParams({(uint32_t)e_pack, (uint32_t)h_pack, (uint32_t)l_pack, layout, (uint32_t)loop}, {openCLBuffer(mTempTrans.get()), openCLBuffer(mTempV.get()), openCLBuffer(mTempQKV.get())}, mOpenCLBackend->getOpenCLRuntime());
int GEMMK=param[0], KREG=param[1], KWG=param[2], KWI=param[3], MDIMA=param[4], MDIMC=param[5], MWG=param[6], NDIMB=param[7], NDIMC=param[8], NWG=param[9], SA=param[10], SB=param[11], STRM=param[12], STRN=param[13], VWM=param[14], VWN=param[15];
buildOptions.emplace("-DGEMMK=" + std::to_string(GEMMK));
buildOptions.emplace("-DKREG=" + std::to_string(KREG));
buildOptions.emplace("-DKWG=" + std::to_string(KWG));
buildOptions.emplace("-DKWI=" + std::to_string(KWI));
buildOptions.emplace("-DMDIMA=" + std::to_string(MDIMA));
buildOptions.emplace("-DMDIMC=" + std::to_string(MDIMC));
buildOptions.emplace("-DMWG=" + std::to_string(MWG));
buildOptions.emplace("-DNDIMB=" + std::to_string(NDIMB));
buildOptions.emplace("-DNDIMC=" + std::to_string(NDIMC));
buildOptions.emplace("-DNWG=" + std::to_string(NWG));
buildOptions.emplace("-DSA=" + std::to_string(SA));
buildOptions.emplace("-DSB=" + std::to_string(SB));
buildOptions.emplace("-DSTRM=" + std::to_string(STRM));
buildOptions.emplace("-DSTRN=" + std::to_string(STRN));
buildOptions.emplace("-DVWM=" + std::to_string(VWM));
buildOptions.emplace("-DVWN=" + std::to_string(VWN));
if(layout >= 4) {
buildOptions.emplace("-DOUTPUTMN");
}
int tileM = MWG;
int tileN = NWG;
int localM = MDIMC;
int localN = NDIMC;
if(mOpenCLBackend->getOpenCLRuntime()->getGpuType() == GpuType::ADRENO) {
buildOptions.emplace("-DUSE_CL_MAD=1");
buildOptions.emplace("-DRELAX_WORKGROUP_SIZE=1");
}
if(mOpenCLBackend->getOpenCLRuntime()->isSupportedFP16()){
buildOptions.emplace(" -DPRECISION=16");
} else {
buildOptions.emplace(" -DPRECISION=32");
}
mKernel_qkv[seq_idx] = mOpenCLBackend->getOpenCLRuntime()->buildKernel("matmul_params_buf", "XgemmBatched", buildOptions);
int out_per_thread_m = tileM / localM;
int out_per_thread_n = tileN / localN;
mGlobalWorkSizeQkv[seq_idx] = {static_cast<uint32_t>(e_pack/out_per_thread_m), static_cast<uint32_t>(h_pack/out_per_thread_n), static_cast<uint32_t>(loop)};
mLocalWorkSizeQkv[seq_idx] = {static_cast<uint32_t>(localM), static_cast<uint32_t>(localN), 1};
float alpha = 1.0f;
float beta = 0.0f;
int idx = 0;
cl_int ret = CL_SUCCESS;
ret |= mKernel_qkv[seq_idx]->get().setArg(idx++, static_cast<int>(e_pack));
ret |= mKernel_qkv[seq_idx]->get().setArg(idx++, static_cast<int>(h_pack));
ret |= mKernel_qkv[seq_idx]->get().setArg(idx++, static_cast<int>(l_pack));
ret |= mKernel_qkv[seq_idx]->get().setArg(idx++, alpha);
ret |= mKernel_qkv[seq_idx]->get().setArg(idx++, beta);
ret |= mKernel_qkv[seq_idx]->get().setArg(idx++, openCLBuffer(mTempTrans.get()));
ret |= mKernel_qkv[seq_idx]->get().setArg(idx++, e_pack);
ret |= mKernel_qkv[seq_idx]->get().setArg(idx++, l_pack);
ret |= mKernel_qkv[seq_idx]->get().setArg(idx++, openCLBuffer(mTempV.get()));
ret |= mKernel_qkv[seq_idx]->get().setArg(idx++, h_pack);
ret |= mKernel_qkv[seq_idx]->get().setArg(idx++, l_pack);
ret |= mKernel_qkv[seq_idx]->get().setArg(idx++, openCLBuffer(mTempQKV.get()));
ret |= mKernel_qkv[seq_idx]->get().setArg(idx++, e_pack);
ret |= mKernel_qkv[seq_idx]->get().setArg(idx++, h_pack);
MNN_CHECK_CL_SUCCESS(ret, "setArg Self-Attention batchmatmul qkv Kernel");
mOpenCLBackend->recordKernel3d(mKernel_qkv[seq_idx], mGlobalWorkSizeQkv[seq_idx], mLocalWorkSizeQkv[seq_idx]);
}
// transpose to output
{
// QKV : [Batch * mNumHead, ROUND_UP(mHeadDim, tile_mn), ROUND_UP(seqLen, tile_mn)] -> [B, N, M]
// output: [Batch, seqLen, mNumHead * mHeadDim]
std::set<std::string> buildOption;
mKernel_clip[seq_idx] = runtime->buildKernel("self_attention_buf", "clip_transpose_qkv", buildOption, inputs[0], outputs[0]);
auto maxWorkGroupSize = static_cast<uint32_t>(runtime->getMaxWorkGroupSize(mKernel_clip[seq_idx]));
int seq_len_piece = ROUND_UP(seq_len, tile_mn) / mQseqSplitNum;
mGlobalWorkSizeClip[seq_idx] = {static_cast<uint32_t>(UP_DIV(seq_len_piece, 4)), static_cast<uint32_t>(UP_DIV(mHeadDim, 4)), static_cast<uint32_t>(batch*mNumHead)};
uint32_t index = 0;
cl_int ret = CL_SUCCESS;
ret |= mKernel_clip[seq_idx]->get().setArg(index++, mGlobalWorkSizeClip[seq_idx][0]);
ret |= mKernel_clip[seq_idx]->get().setArg(index++, mGlobalWorkSizeClip[seq_idx][1]);
ret |= mKernel_clip[seq_idx]->get().setArg(index++, mGlobalWorkSizeClip[seq_idx][2]);
ret |= mKernel_clip[seq_idx]->get().setArg(index++, openCLBuffer(mTempQKV.get()));
ret |= mKernel_clip[seq_idx]->get().setArg(index++, openCLBuffer(outputs[0]));
ret |= mKernel_clip[seq_idx]->get().setArg(index++, tile_mn);
ret |= mKernel_clip[seq_idx]->get().setArg(index++, seq_len);
ret |= mKernel_clip[seq_idx]->get().setArg(index++, seq_len_piece);
ret |= mKernel_clip[seq_idx]->get().setArg(index++, mNumHead);
ret |= mKernel_clip[seq_idx]->get().setArg(index++, mHeadDim);
ret |= mKernel_clip[seq_idx]->get().setArg(index++, seq_idx);
mLocalWorkSizeClip[seq_idx] = localWS3DDefault(mGlobalWorkSizeClip[seq_idx], maxWorkGroupSize, runtime, "clip_transpose_qkv", mKernel_clip[seq_idx]).first;
MNN_CHECK_CL_SUCCESS(ret, "setArg clip_transpose_qkv");
mOpenCLBackend->recordKernel3d(mKernel_clip[seq_idx], mGlobalWorkSizeClip[seq_idx], mLocalWorkSizeClip[seq_idx]);
}
}
mOpenCLBackend->endRecord(mRecording);
return NO_ERROR;
}
ErrorCode SelfAttentionBufImpl::onExecute(Backend *backend, const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs) {
#ifdef LOG_VERBOSE
MNN_PRINT("start SelfAttentionBufExecution onExecute !\n");
#endif
mOpenCLBackend = static_cast<OpenCLBackend *>(backend);
#ifdef ENABLE_OPENCL_TIME_PROFILER
int batch = inputs[0]->shape()[0];
int seqLen = inputs[0]->shape()[1];
int headDim = inputs[0]->shape()[2]/3/mNumHead;
std::string name;
name += "-b" + std::to_string(batch);
name += "-s" + std::to_string(seqLen);
name += "-h" + std::to_string(mNumHead);
name += "-d" + std::to_string(headDim);
for(int seq_idx = 0; seq_idx < mQseqSplitNum; seq_idx++) {
{
cl::Event event;
run3DKernelDefault(mKernel_split[seq_idx], mGlobalWorkSizeSplit[seq_idx], mLocalWorkSizeSplit[seq_idx],
mOpenCLBackend->getOpenCLRuntime(), &event);
mOpenCLBackend->getOpenCLRuntime()->pushEvent({"While-gemm-split" + name, event});
}
{
cl::Event event;
run3DKernelDefault(mKernel_qk[seq_idx], mGlobalWorkSizeQk[seq_idx], mLocalWorkSizeQk[seq_idx],
mOpenCLBackend->getOpenCLRuntime(), &event);
mOpenCLBackend->getOpenCLRuntime()->pushEvent({"While-gemm-batchgemm" + name, event});
}
{
cl::Event event;
run3DKernelDefault(mKernel_softmax[seq_idx], mGlobalWorkSizeSoftMax[seq_idx], mLocalWorkSizeSoftMax[seq_idx],
mOpenCLBackend->getOpenCLRuntime(), &event);
mOpenCLBackend->getOpenCLRuntime()->pushEvent({"While-gemm-softmax" + name, event});
}
{
cl::Event event;
run3DKernelDefault(mKernel_trans[seq_idx], mGlobalWorkSizeTrans[seq_idx], mLocalWorkSizeTrans[seq_idx], mOpenCLBackend->getOpenCLRuntime(), &event);
mOpenCLBackend->getOpenCLRuntime()->pushEvent({"While-gemm-trans-1" + name, event});
}
{
cl::Event event;
run3DKernelDefault(mKernel_qkv[seq_idx], mGlobalWorkSizeQkv[seq_idx], mLocalWorkSizeQkv[seq_idx],
mOpenCLBackend->getOpenCLRuntime(), &event);
mOpenCLBackend->getOpenCLRuntime()->pushEvent({"While-gemm-batchgemm" + name, event});
}
{
cl::Event event;
run3DKernelDefault(mKernel_clip[seq_idx], mGlobalWorkSizeClip[seq_idx], mLocalWorkSizeClip[seq_idx],
mOpenCLBackend->getOpenCLRuntime(), &event);
mOpenCLBackend->getOpenCLRuntime()->pushEvent({"While-gemm-clip" + name, event});
}
}
#else
for(int seq_idx = 0; seq_idx < mQseqSplitNum; seq_idx++) {
run3DKernelDefault(mKernel_split[seq_idx], mGlobalWorkSizeSplit[seq_idx], mLocalWorkSizeSplit[seq_idx], mOpenCLBackend->getOpenCLRuntime());
run3DKernelDefault(mKernel_qk[seq_idx], mGlobalWorkSizeQk[seq_idx], mLocalWorkSizeQk[seq_idx], mOpenCLBackend->getOpenCLRuntime());
run3DKernelDefault(mKernel_softmax[seq_idx], mGlobalWorkSizeSoftMax[seq_idx], mLocalWorkSizeSoftMax[seq_idx], mOpenCLBackend->getOpenCLRuntime());
run3DKernelDefault(mKernel_trans[seq_idx], mGlobalWorkSizeTrans[seq_idx], mLocalWorkSizeTrans[seq_idx], mOpenCLBackend->getOpenCLRuntime());
run3DKernelDefault(mKernel_qkv[seq_idx], mGlobalWorkSizeQkv[seq_idx], mLocalWorkSizeQkv[seq_idx], mOpenCLBackend->getOpenCLRuntime());
run3DKernelDefault(mKernel_clip[seq_idx], mGlobalWorkSizeClip[seq_idx], mLocalWorkSizeClip[seq_idx], mOpenCLBackend->getOpenCLRuntime());
#ifdef DUMP_INTERNAL_LOG
{
std::ofstream outFile("qk.txt");
std::vector<float> hostPtr_3(16*4096*4096);
mOpenCLBackend->getOpenCLRuntime()->commandQueue().enqueueReadBuffer(openCLBuffer(mTempQK.get()), CL_TRUE, 0, 16*4096*4096*4, hostPtr_3.data());
float max_ = -1000000.0;
float min_ = 10000000.0;
float total = 0.0;
for(int i=1; i<hostPtr_3.size(); i++) {
float temp = hostPtr_3[i];
outFile << hostPtr_3[i] << "\n";
total += temp/(16*4096*4096);
if(max_ < temp) max_ = temp;
if(min_ > temp) min_ = temp;
}
outFile.close();
printf("qk max:%f min:%f avg:%f\n", max_, min_, hostPtr_3[0]+total);
}
#endif
}
#endif
#ifdef LOG_VERBOSE
MNN_PRINT("end SelfAttentionBufExecution onExecute !\n");
#endif
return NO_ERROR;
}
SelfAttentionBufExecution::SelfAttentionBufExecution(const MNN::Op *op, Backend* backend) : CommonExecution(backend, op) {
mImpl.reset(new SelfAttentionBufImpl(op, backend));
}
SelfAttentionBufExecution::SelfAttentionBufExecution(std::shared_ptr<SelfAttentionBufImpl> impl, const MNN::Op *op, Backend *backend) : CommonExecution(backend, op), mImpl(impl) {}
ErrorCode SelfAttentionBufExecution::onResize(const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs) {
return mImpl->onResize(backend(), inputs, outputs);
}
ErrorCode SelfAttentionBufExecution::onExecute(const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs) {
return mImpl->onExecute(backend(), inputs, outputs);
}
bool SelfAttentionBufExecution::onClone(Backend* bn, const Op* op, Execution** dst) {
if (nullptr == dst) {
return true;
}
*dst = new SelfAttentionBufExecution(mImpl, op, bn);
return true;
}
class SelfAttentionBufCreator : public OpenCLBackend::Creator {
public:
virtual Execution *onCreate(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs,
const MNN::Op *op, Backend *backend) const override {
for (int i = 0; i < inputs.size(); ++i) {
TensorUtils::setTensorSupportPack(inputs[i], false);
}
for (int i = 0; i < outputs.size(); ++i) {
TensorUtils::setTensorSupportPack(outputs[i], false);
}
return new SelfAttentionBufExecution(op, backend);
}
};
REGISTER_OPENCL_OP_CREATOR(SelfAttentionBufCreator, OpType_FmhaV2, BUFFER);
} // namespace OpenCL
} // namespace MNN
#endif/* MNN_SUPPORT_TRANSFORMER_FUSE */
#endif/* MNN_OPENCL_BUFFER_CLOSED */