MNN/source/backend/vulkan/image/execution/VulkanSoftmax.cpp

145 lines
5.1 KiB
C++
Raw Normal View History

2019-04-17 10:49:11 +08:00
//
// VulkanSoftmax.cpp
// MNN
//
// Created by MNN on 2019/01/31.
// Copyright © 2018, Alibaba Group Holding Limited
//
2022-12-30 15:18:58 +08:00
#include "VulkanSoftmax.hpp"
2019-12-27 22:16:57 +08:00
#include "core/Macro.h"
#include "core/TensorUtils.hpp"
2019-04-17 10:49:11 +08:00
namespace MNN {
2024-11-18 14:37:45 +08:00
struct SoftmaxConstBuffer {
uint N;
uint H;
uint W;
uint C4;
uint CLeft;
2019-04-17 10:49:11 +08:00
};
2024-11-18 14:37:45 +08:00
VulkanSoftmax::VulkanSoftmax(const Op* op, Backend* bn, const uint axisIndex) : VulkanBasicExecution(bn) {
mAxisIndex = axisIndex;
2020-11-05 16:41:56 +08:00
auto vkBn = (VulkanBackend*)backend();
2024-11-18 14:37:45 +08:00
std::string shaderName = "glsl_softmaxImage_";
std::string macro = "";
std::string suffix = "comp";
switch (axisIndex) {
case 0:
macro = "AXIS_N_"; break;
case 1:
macro = "AXIS_H_"; break;
case 2:
macro = "AXIS_W_"; break;
case 3:
macro = "AXIS_C_"; break;
}
std::vector<VkDescriptorType> types {VK_DESCRIPTOR_TYPE_STORAGE_IMAGE,
VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER,
VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER};
mSoftmaxPipeline = vkBn->getPipeline(shaderName + macro + suffix, types);
2020-11-05 16:41:56 +08:00
mDescriptorSet.reset(mSoftmaxPipeline->createSet());
2024-11-18 14:37:45 +08:00
mSoftmaxConstBuffer = std::make_shared<VulkanBuffer>(vkBn->getMemoryPool(), false, sizeof(SoftmaxConstBuffer), nullptr, VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT);
2019-04-17 10:49:11 +08:00
}
VulkanSoftmax::~VulkanSoftmax() {
}
ErrorCode VulkanSoftmax::onEncode(const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs,
const VulkanCommandPool::Buffer* cmdBuffer) {
2024-11-18 14:37:45 +08:00
auto vkBn = static_cast<VulkanBackend *>(backend());
2019-04-17 10:49:11 +08:00
auto input = inputs[0];
auto output = outputs[0];
2024-11-18 14:37:45 +08:00
auto inputShapeNHWC = VulkanTensor::tensorShapeFormat(input);
std::vector<uint> cpuSoftmaxConstBuffer = {(uint)inputShapeNHWC[0], (uint)inputShapeNHWC[1], (uint)inputShapeNHWC[2], (uint)UP_DIV(inputShapeNHWC[3], 4), (uint)ROUND_UP(inputShapeNHWC[3], 4) - inputShapeNHWC[3]};
2019-04-17 10:49:11 +08:00
2020-11-05 16:41:56 +08:00
{
2024-11-18 14:37:45 +08:00
auto softmaxConst = reinterpret_cast<SoftmaxConstBuffer*>(mSoftmaxConstBuffer->map());
::memset(softmaxConst, 0, sizeof(SoftmaxConstBuffer));
softmaxConst->N = cpuSoftmaxConstBuffer[0];
softmaxConst->H = cpuSoftmaxConstBuffer[1];
softmaxConst->W = cpuSoftmaxConstBuffer[2];
softmaxConst->C4 = cpuSoftmaxConstBuffer[3];
softmaxConst->CLeft = cpuSoftmaxConstBuffer[4];
mSoftmaxConstBuffer->unmap();
2019-04-17 10:49:11 +08:00
}
2024-11-18 14:37:45 +08:00
// N * H * W * C4
uint numTotal = cpuSoftmaxConstBuffer[0] * cpuSoftmaxConstBuffer[1] * cpuSoftmaxConstBuffer[2] * cpuSoftmaxConstBuffer[3];
uint numY = numTotal / cpuSoftmaxConstBuffer[mAxisIndex];
auto vkOutput = (VulkanTensor*)output->deviceId();
auto vkInput = (VulkanTensor*)input->deviceId();
mDescriptorSet.reset(mSoftmaxPipeline->createSet());
mDescriptorSet->writeImage(vkOutput->image()->view(), vkBn->getCommonSampler()->get(),
VK_IMAGE_LAYOUT_GENERAL, 0);
mDescriptorSet->writeImage(vkInput->image()->view(), vkBn->getCommonSampler()->get(),
VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL, 1);
mDescriptorSet->writeBuffer(mSoftmaxConstBuffer->buffer(), 2, mSoftmaxConstBuffer->size());
vkOutput->image()->barrierWrite(cmdBuffer->get());
vkInput->image()->barrierRead(cmdBuffer->get());
2020-11-05 16:41:56 +08:00
mSoftmaxPipeline->bind(cmdBuffer->get(), mDescriptorSet->get());
2024-11-18 14:37:45 +08:00
vkCmdDispatch(cmdBuffer->get(), 1, numY, 1);
2019-04-17 10:49:11 +08:00
return NO_ERROR;
}
class VulkanSoftmaxCreator : public VulkanBackend::Creator {
public:
virtual VulkanBasicExecution* onCreate(const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs, const MNN::Op* op,
2019-04-17 10:49:11 +08:00
Backend* backend) const override {
2024-11-18 14:37:45 +08:00
auto input = inputs[0];
uint dimension = input->dimensions();
if (dimension > 4) {
return nullptr;
}
// Work out the reduce axis, taking various formats and dimensions into account.
MNN_DATA_FORMAT format = VulkanImageConverter::getTensorLinearFormat(input);
int axis = op->main_as_Axis()->axis();
if (axis < 0) {
axis = input->dimensions() + axis;
}
std::vector<uint> axisMap;
if (dimension == 4) {
if (format == MNN_DATA_FORMAT_NCHW) {
axisMap.assign({0, 3, 1, 2});
} else {
axisMap.assign({0, 1, 2, 3});
}
} else if (dimension == 3) {
if (format == MNN_DATA_FORMAT_NCHW) {
axisMap.assign({0, 3, 1});
} else {
axisMap.assign({0, 1, 3});
}
} else if (dimension == 2) {
axisMap.assign({0, 3});
} else if (dimension == 1) {
axisMap.assign({3});
} else {
return nullptr;
}
uint axisIndex = axisMap[axis];
return new VulkanSoftmax(op, backend, axisIndex);
2019-04-17 10:49:11 +08:00
}
};
static bool gResistor = []() {
VulkanBackend::addCreator(OpType_Softmax, new VulkanSoftmaxCreator);
return true;
}();
} // namespace MNN