MNN/source/backend/opencl/execution/image/RangeExecution.cpp

86 lines
3.4 KiB
C++
Raw Normal View History

2023-12-27 17:26:44 +08:00
//
// RangeBufExecution.cpp
// MNN
//
// Created by MNN on 2023/12/1.
// Copyright © 2018, Alibaba Group Holding Limited
//
#include "backend/opencl/execution/image/RangeExecution.hpp"
#include "core/Macro.h"
#include "core/TensorUtils.hpp"
#include "backend/opencl/core/OpenCLBackend.hpp"
namespace MNN {
namespace OpenCL {
2024-04-19 11:58:21 +08:00
RangeExecution::RangeExecution(const std::string &compute, const MNN::Op *op, Backend* backend) : CommonExecution(backend, op) {
2023-12-27 17:26:44 +08:00
mBuildOptions.emplace(compute);
// Do nothing
}
2024-04-19 11:58:21 +08:00
ErrorCode RangeExecution::onEncode(const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs) {
mUnits.resize(1);
auto &unit = mUnits[0];
2023-12-27 17:26:44 +08:00
auto openCLBackend = static_cast<OpenCLBackend*>(backend());
auto runtime = openCLBackend->getOpenCLRuntime();
2025-04-28 11:38:44 +08:00
unit.kernel = runtime->buildKernel("range", "range", mBuildOptions, openCLBackend->getPrecision(), inputs[0], outputs[0]);
2024-04-19 11:58:21 +08:00
mMaxWorkGroupSize = static_cast<uint32_t>(runtime->getMaxWorkGroupSize(unit.kernel));
2023-12-27 17:26:44 +08:00
std::vector<int> outputShape = tensorShapeFormat(outputs[0]);
int batch = outputShape.at(0);
int outputHeight = outputShape.at(1);
int outputWidth = outputShape.at(2);
int channels = outputShape.at(3);
int channelBlocks = (channels + 3) / 4;
2024-04-19 11:58:21 +08:00
std::vector<uint32_t> mGlobalWorkSize = {1, 1, 1};
std::vector<uint32_t> mLocalSize = {1, 1, 1};
2023-12-27 17:26:44 +08:00
mGlobalWorkSize = {
static_cast<uint32_t>(outputWidth),
static_cast<uint32_t>(outputHeight),
static_cast<uint32_t>(batch * channelBlocks)
};
uint32_t idx = 0;
cl_int ret = CL_SUCCESS;
2024-04-19 11:58:21 +08:00
ret |= unit.kernel->get().setArg(idx++, mGlobalWorkSize[0]);
ret |= unit.kernel->get().setArg(idx++, mGlobalWorkSize[1]);
ret |= unit.kernel->get().setArg(idx++, mGlobalWorkSize[2]);
ret |= unit.kernel->get().setArg(idx++, openCLImage(inputs[0]));
ret |= unit.kernel->get().setArg(idx++, openCLImage(inputs[2]));
ret |= unit.kernel->get().setArg(idx++, openCLImage(outputs[0]));
ret |= unit.kernel->get().setArg(idx++, outputWidth);
ret |= unit.kernel->get().setArg(idx++, outputHeight);
ret |= unit.kernel->get().setArg(idx++, channels);
ret |= unit.kernel->get().setArg(idx++, channelBlocks);
2023-12-27 17:26:44 +08:00
MNN_CHECK_CL_SUCCESS(ret, "setArg RangeExecution");
std::string kernelName = "range";
2025-04-28 11:38:44 +08:00
mLocalSize = localWS3DDefault(mGlobalWorkSize, mMaxWorkGroupSize, openCLBackend->getOpenCLRuntime(), kernelName, unit.kernel, openCLBackend->getCLTuneLevel()).first;
2024-04-19 11:58:21 +08:00
openCLBackend->recordKernel3d(unit.kernel, mGlobalWorkSize, mLocalSize);
unit.globalWorkSize = {mGlobalWorkSize[0], mGlobalWorkSize[1], mGlobalWorkSize[2]};
unit.localWorkSize = {mLocalSize[0], mLocalSize[1], mLocalSize[2]};
2023-12-27 17:26:44 +08:00
return NO_ERROR;
}
class RangeCreator : public OpenCLBackend::Creator {
public:
virtual Execution* onCreate(const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs,
const MNN::Op* op, Backend* backend) const override {
auto code = inputs[0]->getType().code;
switch (code) {
case halide_type_int:
2024-04-19 11:58:21 +08:00
return new RangeExecution("-DUSE_INT", op, backend);
2023-12-27 17:26:44 +08:00
case halide_type_float:
2024-04-19 11:58:21 +08:00
return new RangeExecution("-DUSE_FLOAT", op, backend);
2023-12-27 17:26:44 +08:00
default:
return nullptr;
}
}
};
REGISTER_OPENCL_OP_CREATOR(RangeCreator, OpType_Range, IMAGE);
} // namespace OpenCL
} // namespace MNN